WASHINGTON UNIVERSITY IN ST. LOUIS

School of Arts & Sciences
Department of Physics

Dissertation Examination Committee:
Kater W. Murch, Chair
Erik A. Henriksen
Michael C. Ogilvie
Robert B. Wexler
Chong Zu

Entanglement-Enhanced Metrology With Superconducting Circuits

by
Xingrui Song

A dissertation presented to
Washington University in St. Louis
in partial fulfillment of the
requirements for the degree
of Doctor of Philosophy

May 2025
St. Louis, Missouri



© 2025, Xingrui Song



Table of Contents

| B3 R o)l S T 1 PP v
LSt OF TaDIES .. eneeeeei e e vii
ACKNOWIEAZEMENLS. . ..oetitiit e ettt viil
ADSTTACT <.t X
Chapter 1: Quantization of SUPETCONAUCLOTS ... ....uiviniiiiiii e 1
L1 INtrOdUCHION ...t e 1

1.2 Lagrangian and Hamiltonian Formalisms of a Superconductor............................. 2

1.3 Quantization along a Spacetime Loop.........cc.vvviiiiiniiiiiiiiieeec e 7

1.4 Lagrangian and Hamiltonian Formalisms of Electromagnetic Field....................... 9

1.5 Superconductor Coupled to Electromagnetic Field .................cocoooiiiiiiinnin. 11

1.6 Sigma Model for Superconductors..........c..ouvuiiiiiriiiie e 12
1.6.1  Electron-hole Symmetry ...........coooviiiiiiniiiiiiiiii e 15

R A 0 ' 1 PP 15
Chapter 2: Agnostic Sensing with Superconducting Qubits ..............cocoeiiiiiiiiiinininan... 17
2.1 INErOUCTION ..t 17

2.2 One-Electron Universe and Quantum Electrodynamics ..............cocoevveviiniininnnnnn. 18
2.2.1 Wheeler’s Phone Call to Feynman................ccccoooiiiiiiiiiiiiiieeeen, 18

2.2.2  Feynman Propagators and Diagrams .............ccoeeuviiiniiiiniiniiniiniiennenn. 19

2.3 Closed TIMeE-1TKE CUIVE .....uiunitiiit i 21

2.4 Diagrammatic Representation of Quantum Entanglement .....................cc.con. 22
2.4.1 A Simple EXample......oooiniiiiiiiii 22

2.4.2  Quantum Teleportation ...........ccuiuiiiiiiiiiiii e 23

2.5 Circuit QED and the Single-qubit Sensor ............ccoovvviiiiiiiiiiiiieeee 24
2.5.1 Single-Qubit Sensing Protocol............ceviiiiiiiiiii 24

2.6 Quantum and Classical Fisher Information ......................cooiiiiiiiiiii 26

2.7 Cramér—Rao Bound............oiiiii 33

2.8  Generalized Uncertainty Principle ............oooooiiiiiiiiiiiiii e, 34



2.9 Single QUDIt SENSOT ... ...ttt et 35
2.9.1 Quantum Fisher Information .................ccoooiiiiiiiiiiiiii e, 37

2.9.2  Classical Fisher Information ............c..cooeiiiiiiiiiiiiiiiin e 39

2.9.3  Experimental Investigation for the Single Qubit Sensor ..............c..ccceeueee. 40

2.10 Rotational Invariance of the Singlet State..............ccoooiiiiiiiiiiiii i 41
2.11 Hindsight Sensing Protocol ...........covuiuiiiiiiii e 43
2.11.1 Protocol OUtlNe.......c.ovniuinii e 43
2.11.2 Experimental ObServations ............euvueiininiieiiiieteieieeieeeeneeneaeeenannns 44

2.12 Agnostic Sensing Protocol .........ooiiniiiii e 44
B B T 1) Uo7 ) PPt 45
2.12.2 Results and Performance.............cocviiiiiiiiiiiiiii e 46
2.12.3 Finite FIdelity ....oooienieiii e 47

2.13 Classical ANCILA ... ..c..iuniiii e 48
214 SUIMNMATY oottt e e e e e et e et et e et et e et a e aaes 48
2,15 DASCUSSION ...ttt et ettt et et et 49
Chapter 3: Tri-axisS SeNSOT STALES.....uuininitit ettt e e et e e e et e e eeneaeaeananas 52
3.1 IOAUCTION ...t e 52
3.2 Two-qubit Maximally Entangled States ..............cocooiiiiiiiiiiii e 53
3.2.1 Measuring Distance in the 2QMES Ball ...............cooooiiiiiiiiiiiin, 54

3.2.2 Geodesicsinthe 2QMES Ball ...........oooiiiiiiii 57

3.3 Tri-aXis SENSOT STALES ....uiuitiiinitit ettt e et e et e e e e e e e e eaneaeananns 57
3301 DEfIITION . .euititit it 57

3.3.2  State Preparation ...........c..eeeieienineiiie e et 60

3.3.3  Classical Fisher Information .............c..coveiiiiiiiiiiiii e 61

3.3.4 Quantum Fisher Information Matrix ..............cccooiiiiiiiiiiiiii, 62
Chapter 4: POSItIONIUM SENSING .. .uvuvininiteieiieietet et et e et e e ae e eeaeaeaneneneaeananas 65
4.1 INErOAUCTION ...t 65
4.2 Lagrangian and Hamiltonian Formulism of a Transmon Circuit ........................... 66
4.3 AC Stark Shift... .o 68
Chapter 5: Experimental SETUDP .......ouiiinieiiiiii et e e aanas 71
T B B 15 1 PSPPSR 71



BTN 1] 13 1o PP 72

5.3 MixXer CaliDrations ..........cuuiuniiniitei e 73

5.4 Heterodyne Readout ...........couiuiiniiiiiii e 75

5.5 Integration WeightS .......o.iuiiiniiiiiiii e 76

5.6 ACHIVE RESEL .uunitiiieii i 77

5.7 Readout COTTECIONS ... ..uuitineti et 78

5.8  Spectral Filtering for PulSes ..........cooiiiiiiiiiiiii e 78
RETCIONICES ... 84
PN 0] 01S) 114 3 Qs PP 91
A.1 Energy-momentum Tensor of Superconductor..............cevviviiiiiiininiiieeiieneane. 91
A.2 Properties of the Entangled States............coooiviiiiiiiiiiiiiii 91
A3 Bl States .oouene i 92
A.4 Relation between the Bell States..........c.oveiiiiiiiiniiii e 93
A.5 Arbitrary Single-qubit ROtation ...........oouviiiiiiiiiiiiiiiie e 93
A.5.1 The Ry () RePreSentation .............veeeuunieeiiineeiiiineeiiieeeiie e e e 93

A5.2  VIrttal 2-rotationsS. ... c.uenieie e 96

A.5.3 Physical 2-TOtationS........ouiuiiiii e 99

A5.4 The U(0, o, A) Representation ............cceeuuuunneeeimiiinnneeiiiiiineeeeiiiineenn 99

A.5.5 Hermitian Conjugate of U .......c.ooiiiiniiiiiiii e 101

v



List of Figures

Figure 1.1: Elementary particle interactions ............c.ooeuveuiiniiniiniiiiiiniineieneeeeeenees 1
Figure 1.2: MinKOWSKI MEIIC. .. .uuinieitiiiii e e 5
Figure 1.3: Identifying endpoints of a line segment ..............ccoeeviiiiiiiiiniiiiiniiiiieieenn, 6
Figure 1.4: Quantization along a spacetime 100P. .........ovviiiniiiiiiiiiiieiic e 8
Figure 2.1: John Wheeler and Richard Feynman ..................cooooiiiiii 17
Figure 2.2: One eleCtron UNIVETSE. ....c.uuuiunitinetin ettt et e e e e 18
Figure 2.3: Feynman dia@rams ..........cuueiuiiuiitiniiiiei et eas 20
Figure 2.4: CUup and CaAP ....vuininieiiiie et e 22
Figure 2.5: Connecting cup with measurement ................ocoiiiiiiiiiiiiiiininincieeeen 23
Figure 2.6: Quantum teleportation ..........c..c.iuiuiiniiiii e 23
Figure 2.7: Single-qubit sensing protocol ............coooiuiiiiiiiiiiiiiie e 24
Figure 2.8: Deficiency of single qubit SENSOT..........cuviuiiniiiiiiiiiieiiie e 25
Figure 2.9: Bloch sphere with the incorrect Metric............oooevviiiiiiiiiiiiiiee e 27
Figure 2.10: Metric in the projective Hilbert Space...........ooviviiiiiiiiiiiiiiiiiiiieeeeeeen 28
Figure 2.11: BIoCh SPhere. ... ..o 29
Figure 2.12: Geodesic on the Bloch sphere. ...........coooiiiiiiiiiii 30
Figure 2.13: Single-qubit sensing protocol on the Bloch sphere ...................ccc. 36
Figure 2.14: Single qubit SENSING. ......uiuiinitiiiiit et e e 40
Figure 2.15: Basis independence of the singlet state ...............cocoiiiiiiiiiiiiiiinieee 41
Figure 2.16: Rotational invariance of the singlet state ..............c..coooiiiiiiiiiiiiin 43
Figure 2.17: HIndSight SENSING. .......vuinitiiiiii it ee e 45
Figure 2.18: Entanglement analogue of a CTC ..........cooiiiiiiiiiiiiiii e 46
Figure 2.19: Agnostic Sensing protoCol...........c.veuiiiiiiiiiiii e 47
Figure 2.20: Finite fidelity. .......oouiiiiiii e 48
Figure 2.21: Classical ancilla.............oooiiiiiiii e 49
Figure 2.22: ATTOWS OF tIIMC. ....ivviiiiit e e e e e e e e eeaaenes 50
Figure 3.1: Ball of two-qubit maximally entangled states..............ccocoveviiiiiiininiineiann... 52

A\



Figure 3.2: Stereographic projection of the equatorial plane of the 2QMES ball.................. 55
Figure 3.3: Northern hemisphere map..........cc.oiuiiiiiiiiiii e 56
Figure 3.4: Geodesics inthe 2QMES ball .........cc.oiiiiiii e 58
Figure 3.5: Tri-aXiS SENSOT SEALES ....euutuinit ittt ittt et et ettt e et e et et et e e e aneaneenaes 59
Figure 3.6: Quantum Fisher information matrix for tri-axis sensor states .................c...c....... 64
Figure 4.1: POSIIONIUM SENSINE. . e.vnitinitin ittt ettt e e e ene e 65
Figure 4.2: Rotation doubling on singlet state...............coeviiiiiiiiiiiiiiiiie e 66
Figure 5.1: Schematic of the deViCe.........ocoininiiiii e 71
Figure 5.2: The physical Chip. .......ccoiiiiiiii e 72
Figure 5.3: ExXperimental SEtUP. .......ouiviiiiiiie e 73
Figure 5.4: 1Q miXer fOr UP-CONVETSION. ....uvuuitnititiiiie et eae 73
Figure 5.5: 1Q mixer for dOWNCONVETSION. .....c.uiunitniiiiniiii et ea 76
Figure 5.6: Readout OptimMIZation. ... .....o.ueuitiniiiiii et 77
Figure 5.7: Cosine pulse and the derivative.............ooviiiiiiniiiiii e 79
Figure 5.8: Spectrally filtered pulSe...........ooiniiiiiiii i 80
Figure 5.9: Combined pulSe ..........cooiuiiiiiii i 82
Figure 5.10: SQUAre PulSe ... ..c.iuiuiiiiiie e e 83
Figure 5.11: Feedback control for parametric reSONance.............oeeeuereeninenerernenenenennenenanns. 83
Figure A.2: Cup and cap. (a) Cup and (b) Cap. ...oeoeeiririiiiiiee e 92
Figure A.3: Ball of single qubit ates ...........couiviiiiiiiii e 94

vi



List of Tables

Table 5.1: Measured parameters of the device used in the experiment. ........................ 72

vil



Acknowledgments

This thesis is dedicated to my advisor, Prof. Kater Murch, whose patience, guidance, and unwavering
support have profoundly influenced my academic journey. The freedom he has granted me has
enabled me to explore numerous fascinating aspects of physics both within and beyond the scope
of my research projects. I am also sincerely thankful to every member of the Murch lab. I have
learned a great deal from each one of you, and the experiences and insights I have gained here have
profoundly shaped my cognition of reality. I couldn’t have reached this point without the support
of every member of the Murch lab.

I would like to thank my parents for their support in my pursuit of scientific research—they are the
source of my confidence. An equal amount of gratefulness is due to my wife, Shilling, for joining
me on this journey. She provides me with a solid foundation for all my future endeavors. We have
shared both happiness and sorrow, and our complementary personalities and skills have made our
partnership a balanced and rather fortunate combination.

Finally, I appreciate Washington University and the Department of Physics for providing a beautiful

campus and excellent infrastructure.
Xingrui Song

Washington University in St. Louis

May 2025

viii



ABSTRACT OF THE DISSERTATION
Entanglement-Enhanced Metrology With Superconducting Circuits
by
Xingrui Song
Doctor of Philosophy in Physics
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Washington University in St. Louis, 2025

Professor Kater W. Murch, Chair

Circuit quantum electrodynamics provides a unique platform for investigating fundamental physics
and practical quantum applications. In this thesis, I introduce the superconducting circuit platform
from a foundational perspective. Drawing inspiration from quantum electrodynamics and utilizing
the analog of closed time-like curves, this work achieves quantum enhancement over classical
strategies. Specifically, I investigate the agnostic phase estimation protocol and the associated
approaches that leverage quantum entanglement to optimally estimate an unknown rotation angle
without requiring prior knowledge of the rotation axis. This work not only demonstrates a proof of
concept for a type of entanglement-assisted metrology but also highlights intriguing quantum effects.
To establish the theoretical framework, I include a pedagogical introduction to quantum and classical
Fisher information - the key concepts we utilize for quantifying sensor performance. Finally, I detail
the experimental techniques that enable the demonstration of metrological advantage, weighing the

benefits of quantum enhancement against the costs of entanglement manipulation.
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Chapter 1: Quantization of Superconductors

1.1 Introduction

The electromagnetic field and electrical current represent the very first instance of a gauge field
and corresponding conserved flow of charge that humans have learned to engineer at the quantum
level. The practice of harnessing this specie of gauge interaction with superconducting circuits is
termed circuit quantum electrodynamics (cQED). In terms of elementary interactions, cQED can be
considered even more fundamental than atoms, while also richer than individual spins or photons,
when compared with these equally popular quantum information platforms. The distinctive interplay
between gauge field and matter deserves greater appreciation. Inspecting these two objects, the
electromagnetic field itself is already quite pristine to work with. On the other hand, to access the
intrinsic properties of electric current flowing in superconductors, strategic simplification is the

approach we take.

Quarks

Figure 1.1: Elementary particle interactions. The electromagnetic interaction is mediated by
photons . The form of electrical current most accessible to humans is carried by the ensemble of
electrons e. Other types of interaction are mediated by known bosons, while the particle (quantum)
nature of gravity remains elusive [1].



The purpose of this chapter is to present a tailored model of superconductors suited for cQED
applications. Although various models of superconductivity exist, they are not always the most
convenient for our specific needs. Below is an incomplete list of well-known approaches [2-9],

loosely organized by category:

1. Macroscopic models: Ginzburg-Landau theory, or more generally, nonlinear Schrodinger
equations. Stemming from thermodynamic considerations, these phenomenological models
provide unique insights into superconductivity, especially near phase transitions.

2. Microscopic models: BCS theory, Bogoliubov-de-Gennes (BdG) formalism, and Gor’kov
equations: derived from the many-body electronic Hamiltonian, these models provide a

refined description incorporating quasiparticles.

Despite the capability of these models, our goal is to develop a minimal model that captures
only the most essential degrees of freedom—namely, the superconducting phase and charge den-
sity—along with a small set of related variables. In fact, the conjugacy of phase and charge with
a genuine quantum treatment of their interaction with the electromagnetic field comprises nearly
all the phenomena we seek to analyze. This motivates us to search for a specialized framework.
Drawing selectively from various established approaches, we assemble a minimal yet consistent

model that provides a clear starting point for investigating superconducting circuits.

1.2 Lagrangian and Hamiltonian Formalisms of a
Superconductor

From a phenomenological perspective, a superconductor can be regarded as a perfect fluid with
negligible viscosity and thermal conductivity. Under these assumptions, there is effectively no
entropy production or heat transfer within the relevant time scales, so the fluid’s evolution is isen-
tropic (adiabatic and reversible). This reversibility justifies adopting Lagrangian and Hamiltonian

formalisms, eventually guiding us toward a quantized description of superconductivity. The thermal-
2



ization of the superconductor is also assumed to be homogeneous and far below the superconducting
critical temperature, where the quasiparticle population can be neglected. As a starting point for the
approximation, the fluid is dominated by a single superconducting component.

In this picture, the superconductor could be considered as a coherent ensemble of identical
particles (Cooper pairs) in the condensate, each carrying energy and momentum, thus satisfying
certain universal parameterization and conservation laws. We consider a general form of the

Lagrangian density expressed via its variation
0L =ndpu—73-0p, (1.1)

where o is the chemical potential of a Cooper pair, and p is its momentum. By treating £ as a

function of 1 and p, we define the derivatives
(1, p) 0L
n=mn M? p = Y
O

= d(up) =0
J=Iu,P)= op’

(1.2)

to be the number density and the corresponding conserved current density of the Cooper pairs,
respectively.

Before proceeding, let us briefly examine the dimensional consistency of these quantities. The
Lagrangian density 6 £ has the same dimension as an energy density, i.e., energy per unit volume.
This is consistent with the term ndu, where n represents particles per volume and p is essentially
the form of energy when a particle is at rest. So, their product has the dimension of energy per
volume as well.

Meanwhile, a particle’s kinetic energy has units of momentum multiplied by velocity. Hence, a
particle flow (number flux) j carries units of velocity per spatial volume, and multiplying that by
momentum Jp again yields an energy per volume. Taken together, these considerations confirm
that each term contributing to the Lagrangian density is properly interpreted as an energy density.

We specify the Lagrangian density through the variation J because only the differential of
the Lagrangian density is physically meaningful. Adding an arbitrary constant to the Lagrangian

generally does not contribute to any measurable effect.
3



For consistency, we require the mixed partial derivatives of £ to commute, which yields the

following conditions:

on _0j _,
op Ou
ix._o (1.3)
op J=

These conditions guarantee the § £ to be an exact differential.

Since all the variables are assumed to be dependent on the spacetime coordinates, we also
introduce the covariant notation 2° = (ct, &) = (ct, x,y, z) !, where the index /3 chooses a value
from {0, 1,2,3}, c is the speed of light in vacuum. The differential operators are denoted as
95 = (0y/¢, V) = (9,/c, 9, 0,,0,). Using this representation, we can optionally represent Eq.

(1.1) in a covariant format

0L = —j55p5 = —gﬁvjﬁép”y (1.4)

, where j2 = (cn, §) is the four-current density and p” = (;/c, p) is the four-momentum. In the
following part of the chapter, repeated indices are always implicitly summed over, unless otherwise

stated. We use the Minkowski metric with matrix representation

-1 0 0 O

5 0 100

0 010

0 001

The meaning of the metric is for measuring infinitesimal spacetime distance (Fig. (1.2))
ds? = gﬁvdxﬁde
2 2 2 2
= goo (dz°)" + g11 (dz')” + gop (d2?)” + g5 (da?) (1.6)

= —c2dt? + dz? + dy? + d22.

We will encounter more examples of measuring infinitesimal distances in the later chapters.

'Throughout this chapter, for clarity, we use Greek (Latin) alphabet as indices to label the components of 4-
dimensional (3-dimensional) quantities.



ds?
cdt?

dz? + dy? + dz?

Figure 1.2: Minkowski metric. The minus sign in the time-like component of the metric is

significant. In the triangle, the hypotenuse ds is shorter than the bottom leg y/dx2 + dy? + dz2 due
to the contribution from propagation in time c d¢. The phenomenon is known as length contraction
in relativity. The value of ds? is positive (negative) for a space-like (time-like) interval.

The variables with lowered indices are j; = (—cn, j) and pg = (—p/c, p). We will occasion-
ally adopt the covariant notations, which help us utilize the formal symmetry between temporal and
spatial coordinates.

In addition to the fluid picture, a superconductor is simultaneously characterized as a wave.
We further assume the superconductor admits an order parameter § = 6(¢, x) taking values from
[—, 7] with the endpoints identified (Fig. (1.3)). The order parameter plays the role of a phase

propagating in spacetime, complying with the four-momentum

hogt = h(—w/c, k) = pg,
—h0,0 = hw = p, (1.7)
hV8 = hk = p,
where £ is the reduced Planck constant. We write down the Lagrangian density and action using 6

as the field variable

5.L(0) = —hj?0,460,

(1.8)
5S[0] = /d4x 5L = —h/d4:1: (nd,60 + j - V6),

where the square bracket in S[0] is a convention for emphasizing the action is a functional which
maps a function 6(x) to a number.

The wave picture and the fluid picture unify when we calculate the equation of motion by



—mand

[_77-7 ﬂ-] Sl

[—m, 7] /{—m,7} = St

Figure 1.3: Identifying endpoints of a line segment. The topology of the line segment is changed.
Identifying points is a topological operation of gluing together points. Also known as the quotient
topology. We will encounter more examples of identifying points in a manifold in the later chapters.
We emphasize that the topology of the space in which the order parameter is defined is important in
two ways: (1) it defines the correct quantum mechanical boundary conditions for the allowed states.
In particular, such a periodic boundary condition prescribes a discretized conjugate momentum. In
other words, the integer nature of charge. (2) It emphasizes the importance of gauge symmetry in
quantum mechanics since each point on the circle is placed on an equal footing.

evaluating the action principle
0 = 0S5[6]

(1.9)
= h/d4:z: Oyn + V - §)56 — h/d‘lxaﬁ(jﬁae),

for arbitrary variation 86, where the second term is a vanishing surface if 52 = 0 on the integration
boundary. For simplicity, we assume no current entering or escaping the superconductor, and
vanishing initial and final charge distribution. In this case, the equation of motion is simply the

continuity equation expressing the conservation of the number of Cooper pairs
on+V-3=0, (1.10)

which turns out to be also a wave equation for € in the later section.
The unification of the two pictures becomes more explicit when we consider the kinetics of a
Cooper pair
O,p+Vu=0, (1.11)
which can be understood as the gradient of chemical potential induces acceleration of the Cooper

pair following Newton’s second law, being derived by commuting 0, and V acting on the phase 6.
6



We also conclude that the momentum field is irrotational

V xp=0. (1.12)

We calculate the canonical momentum of 6

= —hn, (1.13)

which leads to the With the Hamiltonian density given by the Legendre transform
IH(0) = —hd(no,0) — 6L(0)

= d(nu) —6L(0)

(1.14)
= puon +73-0p
= pén — h(V - 3)46
The Hamilton equations of motion are
1 OH 1
0=—— - =
% h on(x) h’ 115
1 0H (1.15)
omn

= —_—_—— - = —v .9
h 00(x) J
We proceed with the canonical quantized description by writing the commutation relation for
the operators
[6(x),n(z")] = —i6® (x — ), (1.16)
where 6% () is the Dirac delta function in the spatial dimensions. The above commutation relation

could be applied to the analysis of lumped element circuits, as we will encounter in the later chapters.

1.3 Quantization along a Spacetime Loop

In addition to the canonical quantization scheme, superconductors exhibit another curious quantized

feature, which is the action along a loop in spacetime.

Sioop = fdxﬁpﬁ = hyfde = mbh, (1.17)
7



where m is an integer and h = 27# is the Planck constant, also aknown as the quantum of action.
While the loop can be chosen as an arbitrary closed curve within the superconducting material
in spacetime, the particular meaningful case is when the curve is associated with the physical
movement of a piece of superconducting material subject to the limitation of the speed of light
in the vacuum, which travels along a time-like curve. It could be understood as a single piece of
superconductor breaking apart, experiencing individual evolution, and recombining later. Joining

the trajectory of the pieces together, we obtain a closed time-like curve (CTC) in spacetime [10—16].

Figure 1.4: Quantization along a spacetime loop.

Or it could be interpreted as the temporary loss of superconductivity in part of the superconductor,
causing a phase slip. In either case, no matter how complicated the individual evolution of the two
pieces undergoes, the integral is constrained to be an integer.

The meaning of this integer is associated with the number of four-dimensional flux quanta
enclosed in the closed spacetime loop. In the case that the system is in a steady state, such a
phenomenon is recognized as the usual quantization of magnetic flux. We will explore the details

by considering the coupling between the superconductor and an electromagnetic field.

8



The above equation reminds us of the old quantum condition, also known as Bohr—Sommerfeld

rule [17, 18]
% = p,dq; = m;h, (Not summing over i) (1.18)
H(q,p)=E

where the integration contour is defined over one period of the motion of constant energy E and
m,; 1s an integer assigned to each pair of canonical coordinates. Despite the visual similarity, the
Bohr—Sommerfeld rule is valid only via the WKB approximation, while our quantization condition

appears to be exact for a superconductor.

1.4 Lagrangian and Hamiltonian Formalisms of
Electromagnetic Field

We work with low fields where the difference between type-I and type-II superconductors is
negligible. Quantization of a gauge field is a non-trivial job, in general. There exist general
approaches like the BRST quantization for the quantization of a general system with gauge symmetry
[19, 20]. For the electromagnetic field, simpler methods exist, and it is useful to demonstrate one

working solution explicitly. Throughout this section, we adopt the temporal gauge

v =0,
AP = (0, A),
(1.19)
E=—0,A,
B=VxA

Under the temporal gauge, the last two equations can be regarded as the definition of E and B, with

which the following two equations are immediately satisfied

V-B=0 (Gauss’s law for magnetism) (1.20)

VxE=-0B (Faraday’s law of induction) (1.21)



The Lagrangian density
0L(A)=D-6E—H -6B+J-J0A

(1.22)
=—D 9,0A—H -V x5A+J- JA,

where J is the current density of the free charge, here treated as a fixed function. Evaluating the
action principle
0=J3S[A]
(1.23)
= /d4:1;(8tD—V xH+J)-6A— /d4:1;8t(D -0A) —I—/d4a:V -(H x §A),
where the last two terms vanish by assuming both D and H vanish on the corresponding boundary.

The resulting equation of motion is
VxH=J+0,D. (Ampere-Maxwell law) (1.24)
The divergence of the above equation produces
V-90,D = 0,p, (Time derivative of Gauss’s law) (1.25)
where p is the charge density satisfying
op+V-J=0. (1.26)
We additionally impose an initial condition
V-D=0,p, t=0 (1.27)

Combining Eq. (1.20), (1.21), (1.24), (1.20) and (1.26), we recover the Maxwell’s equations. We

proceed with the Hamiltonian formalism by calculating the canonical momentum corresponding to

A,
(‘9(ng) =—D, (1.28)
satisfying the canonical commutation relation
[A,(x), Dy(z')] = —ihé®)d, (x — x'). (1.29)
The Hamiltonian is
OH(A)=E-D+H-6B—J-0A (1.30)

10



1.5 Superconductor Coupled to Electromagnetic Field

We couple the superconductor with the electromagnetic field through minimal coupling. By
performing the replacement

2
VO - VO + %A, (1.31)

We distinguish the canonical momentum
p=hVo, (1.32)
which is gauge-dependent and the kinetic momenta
P =nVO+2A (1.33)

where the coupling strength is set by the charge of the Cooper pair, —2e. The total Lagrangian

density

5L(0,A) = —h(nd,00 +j-Vs0) — D -9,6A— H -V x §A —2¢j- A (1.34)

Using the action principle, we obtain the equations of motion under similar procedures and assump-

tions
8tn + v * j — 0,
(1.35)
0,D—V x H—2ej=0.
The kinetic equation shows that the electric field accelerates the Cooper pair in addition to the

chemical potential gradient.

0,P=—2eE—Vy (1.36)
and
V x P =2eB (1.37)
The total Hamiltonian density is
IH(O,A)=puon+j5-6P+E-SD+ H -B. (1.38)

11



1.6 Sigma Model for Superconductors

We consider a special case of the above framework, the O(2) sigma model or, equivalently, the
quantum rotor model in the continuum limit [2, 3]. As a phenomenological model, it correctly treats
the linear part of kinetic inductance without the complexity involving critical temperature and critical
field, making it a suitable description in the dilution refrigeration temperature with appropriate
magnetic shielding. We introduce the model by evaluating the charge density. Considering a metal

near the equilibrium satisfying
on, =vop,, 03, = pyov, = @(5196, (1.39)
m

where v represents the electronic density of states near the Fermi surface, n, and u, represent the
density and chemical potential of the electrons, respectively. 7, represents the flow of electrons, p,
represents the density of electrons near equilibrium, m represents the effective mass of the electron,
v, and p, represent the velocity and momentum of the electron making drift motion, respectively.

Since variables for the electrons are related to those of the Cooper pairs we have

1 o1

n=one = 2(p, — A), 325.7'6, p = 2p, (1.40)

, where A is the superconducting gap energy that we have assumed to be a constant, for simplicity.

Using these variables, we obtain

1
on=-vou, 0= &5p. (1.41)
4 dm

The major approximation we apply in the sigma model is the linearization of the above equations
by approximating v, p,, m to be constants near the equilibrium. The implication of the linearization
will be discussed later. Under the approximation, we could integrate Eq. (1.41) to arrive at the

relations

1 . po
i = 0 1.42
n 4V,Uw J 4mp7 ( )

where in the first equation we have set the equilibrium (¢ = 0) to be charge-neutral (n = 0).
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This allows us to evaluate the first term in the Lagrangian density

1

. 1 ) v
0L =nép—3-6p = 1 <1/u5u - %g : 5p> = 16 <§u2 — %p2> , (1.43)

By using Eq. (1.7), the Lagrangian density and action of the system without electromagnetic field

h? v 5 Po 9
- — |2 — 0 1.44
£00) = = [500° = 22 (62| (1.44)
h? v p
. 3 . 317 2 PO 2
S[9] = / dtdr £(6) = - / dtdr [Q(ate) 22 (V6) ] , (1.45)
Performing variation with respect to 6, we obtain

5o =1 / dtdr350 (—ua2 + @vz’) 0 (1.46)

4 o m ’

By enforcing the action principle 0.5[6] /560 = 0, the equation of motion we obtain is a wave equation

defining the Goldstone mode of the superconductor [21-26]
(—uaf + @W) 6 =0, (1.47)
m
By replacing —9, — w, V — k, we obtain the linear dispersion relation
w = +v|k, (1.48)
where the velocity v of the propagation is the Fermi velocity given by

0w [ po
v—‘a—k = : (1.49)

mv

While the Goldstone mode is massless, featuring a linear dispersion relation, in reality, the mode
does not individually exist because of the strong coupling with the electromagnetic field. In order
to see the effect, we write down the coupled Lagrangian density. The free electromagnetic field in a

dielectric is described by

2 (1.50)



where ¢ is the electric potential, and A is the magnetic vector potential. We have utilized the

relations
E=-Vyp—-0,A,
(1.51)
B=VxA
When coupled to the electric charge
L(p,J,0,A)=—pp+J- A+ L(p, A), (1.52)
To couple the superconductor to an electromagnetic field, we do the replacement
0,0 — 0,60 — h go,
(1.53)

Vo — VO + %A,

where the coupling strength is set by the charge of a Cooper pair, —2e. The total Lagrangian

£(0,p,A) = fi[ <ae 2; )2 2”0 (v9+ hA)2]+£(¢,A) (1.54)

Comparing these two gives us the electric charge density and current of the superconductor

hey

_ hepg 2e
j=-22 (ve+ hA)

By forcing §5[6]/56 = 0, we obtain the equation of motion for 6, which is alternatively expressed

(1.55)

as the continuity equation

op+V-J=0 (1.56)

By calculating the gradient and curl of the two equations, we recover the London equations for

superconductors [27]

1
E = 3t(AJ> + eTI/Vp ~ 8t(AJ),

(1.57)
V x (AJ)=—-B,
where the phenomenological parameter A is given by
A= (1.58)

e2py  n*(q*)?
14



The approximation used in the first equation requires that the spatial gradient of the charge distribu-
tion is small and the density of states is large, which is usually true for metals. From the London
equations, we obtain the Meisner effect. The electromagnetic field follows exponential decay inside
a superconductor with characteristic length A; . Inside a superconductor, we may assume both p
and J vanish. From the equation, we see that the electric potential integrated over time, which has
the same dimension as a magnetic flux, is also quantized. The change of this value can be a result
of a temporary loss of superconductivity or a phase slip through a Josephson junction. After the

superconductivity is recovered, the jump only takes an integer value.

1.6.1 Electron-hole Symmetry

In the sigma model, we linearize the relation between charge and phase (Eq. (1.42)). As a result,

the system respects charge conjugation symmetry
0——0, L£—L (1.59)

The Lagrangian of the system is invariant under charge conjugation. It is a reasonably good
symmetry approximation for superconducting metals with a large density of states. The Hamiltonian

exhibits the same electron-hole symmetry inherent from the Lagrangian
0——0, n—-—-n H—->H (1.60)

In chapter four, we utilize this symmetry to construct the electron-hole symmetry of a superconduct-
ing transmon qubit. The electron-hole symmetry is employed to define a sensing protocol called the

positronium sensing.

1.7 Summary

Our agnostic phase estimation protocol, discussed in later chapters, could be described as a general-
ization of this quantization phenomenon to include more complicated parameter space in addition

to a single phase 6, which encodes the information of a qubit.
15



The interplay of phase and gauge is important because it gives us the hint that quantum mechanics
does not live in a flat space, everything is intrinsically curved. Even if we are not directly dealing

with a gauge field, similar effects will be encountered in the next chapter.
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Chapter 2: Agnostic Sensing with Superconducting
Qubits

2.1 Introduction

In this chapter, we discuss the concept of agnostic sensing, a protocol designed to estimate an
unknown rotation angle o without requiring prior knowledge of the rotation axis 72. To introduce the
idea, we draw inspiration from the anecdote of Richard Feynman and John Wheeler, who explored
the notion that an electron traveling forward in time is effectively indistinguishable from a positron
traveling backward in time.

Building on this time-reversal symmetry perspective, we show how entanglement is related to the
so-called closed time-like curves. Specifically, we harness the power of entangled superconducting
qubits to implement novel sensing protocols that circumvents the need to align the sensor concerning
an unknown rotation axis. We begin by briefly revisiting the historical context and ideas from
quantum electrodynamics (QED). We then show how the concepts can be translated into cQED

setting, leading to metrological advantage.

ro.. ANV

3 \
AT |
(a) John Wheeler (b) Richard Feynman

Figure 2.1
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Figure 2.2: One electron universe. Each red (blue) solid line represents an electron (positron)

traveling forward (backward) in time. Wavy lines represent photons. Each joint of solid lines and
wavy lines represents a pair production or pair annihilation event.

2.2 One-Electron Universe and Quantum Electrodynamics

2.2.1 Wheeler’s Phone Call to Feynman

Here is the story according to Feynman [28]:

I received a telephone call one day at the graduate college at Princeton from Pro-
fessor Wheeler, in which he said, “Feynman, I know why all electrons have the same

charge and the same mass” “Why?” “Because, they are all the same electron!”

Although the one-electron universe hypothesis was not polished at that time, the ingredients
were later integrated into Feynman’s approach to QED. One of the key ideas: the kinematics of

particles respects time symmetry.

18



2.2.2 Feynman Propagators and Diagrams

A textbook for a comprehensive treatment of quantum field theory is recommended [20, 29]. But the
basic idea is simple. We represent the vacuum state as |0). A Fermion can be added to a quantum

state, for example,
¥(y) |0) 2.1)

represents the quantum state with one Fermion created at the spacetime coordinate y, with the first
component 3 labeling the time of its creation. For simplicity, we have suppressed the spinor indices

associated with the Fermion. A Fermion can also be removed from a quantum state. For example

b(@)P(y) |0) (2.2)

represents the removal of a Fermion at spacetime coordinate x, following its creation, where
Y = 9140 is the Dirac adjoint of ¢ and ~° is the time-like Dirac matrix. We may make the
assumption that the Fermion is created before being removed, which translates to z° > 3/°. The
ordering of the Fermionic operators 1) and 1 is important because they do not commute with each
other. The operator to the right is always applied first.

This quantum state can be projected back to the vacuum state to produce a probability amplitude

Splz —y) = Olw(@)¥(y)[0), (2°>y°), (2.3)

which defines the Feynman propagator of a Fermion traveling from y to x. Now, what happens if
we let a particle travel backward in time? In other words, we are attempting to remove a particle

before its creation. Following the previous reasoning, we write down the expression

Sp(z —y) == 0[)Y(@)0), (2° <y?), (2.4)
where a minus sign is added due to the Fermionic statistics when the two operators are exchanged.
The meaning of the expression can be intuitively understood as: by attempting to remove a Fermion
from the vacuum, we created an anti-Fermion at x

Y(z)[0) . (2.5)
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Figure 2.3: Feynman diagrams. (a) Feynman diagram of the Breit-Wheeler pair production without
labeling the direction on the electron/positron propagators. (b) Three different interpretations of
the same pair production process. Unlike conventional Feynman diagrams where the arrows
represent the movement of charge, here, the arrows represent the movement of the particle (electron
or positron), for the purpose of clarity. In this figure three possible interpretations of the same

Feynman diagram appear different.

Based on this interpretation, Eq. (2.4) describes the propagation of an anti-Fermion from z to v.

Combining these two, we arrive at the full definition of the Feynman propagator

Splz —y) = (0|T%(x)d(y)|0) (2.6)

where T'is the time-ordering operator. On the left-hand side, the particle physics represented by the
Feynman propagator is always meaningful regardless of the relation between x° and y°. On the
right-hand side, the picture is more aligned with one’s intuition. No matter whether the excitation is
a Fermion or an Anti-Fermion, it always propagates forward in time. However, the two descriptions
are both correct and equivalent.

Although the construction looks bizarre, built on top of these propagators, QED is a remarkably
20



accurate theory, which has been experimentally examined down to the 10~ level [30, 31].
Feynman’s Nobel Prize-winning work on QED introduced Feynman diagrams to describe
interactions between electrons and photons. Each line in a Feynman diagram represents a Feynman
propagator, which remains valid under changes of reference frame. In particular, an electron
traveling forward in time can be reinterpreted as a positron traveling backward in time. This
interchangeability lays the conceptual foundation for thinking of processes as flexible in their arrow

of time.

2.3 Closed Time-like Curve

One step further, by connecting the worldline of an electron and a positron, we create an object
called closed time-like curve. Similar to the ideas discussed in the first chapter, in the context of
superconductors.

The reason the electron and positron can be regarded as the same electron traveling in the
spacetime is that they are entangled. This quantum entanglement comes from the conservation laws.
The entanglement involves the linear momenta, orbital angular momenta, and spin angular momenta
of the particles. To capture the essence of the process, we focus on the simplest case where all spatial
degrees of freedom are neglected, only considering the entanglement in the spins. Specifically, in
the simple case where two photons are involved, the Landau—Yang theorem guarantees that the
electron and positron have to be generated in zero total angular momentum [32, 33]. Ignoring the
contribution from the orbital part, this implies the generation of a singlet state. An example of such
a singlet generation process is the (linear) Breit-Wheeler process near the energy threshold, with
two incident beams of «-photons both left or right circularly polarized [34].

While high-energy experiments have so far provided only partial evidence for the Breit—-Wheeler
process [35, 36], we simplify this challenge by adopting an alternative approach to explore its
underlying physics. In our experimental work [37], which builds on the protocol of Ref. , we encode

the spins of two entangled particles into superconducting transmon qubits, forming the basis for

21



our experimental investigation. Prior optical experiments have examined the relationship between
entanglement manipulation and closed timelike curves [38, 39], and delayed-choice quantum
erasure experiments bear conceptual similarities to our protocol [40, 41]. However, metrological
protocols inspired by closed timelike curves have not yet been demonstrated experimentally. Before
proceeding further, we introduce a diagrammatic representation of entangled states, providing

intuitive clarity for working with such quantum systems.

2.4 Diagrammatic Representation of Quantum Entanglement

The creation of an entangled pair is represented by a cup shape. The measurement in projecting into

the entangled state is represented by a cap shape.

t t
(W]

k)/ 7
o
(a) (b)

Figure 2.4: Cup and cap. (a) A cup represents a pair of qubits in an entangled state. (b) A cap
represents a projective measurement collapsing the quantum state into an entangled state.

2.4.1 A Simple Example

Here is a simple example of connecting a cup with a projective measurement.

By connecting a cup with a projective measurement, we allow the eigenstate of the measurement
basis to propagate backward in time and determine the initial state of the other qubit in the same
entangled pair. The exact initial state of the qubit depends on the measurement outcome and the
type of entangled state.

Later, we will analyze this setup in the case that the entangled state is a singlet state, which will

be important for our protocols.
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Figure 2.5: Connecting cup with measurement.

2.4.2 Quantum Teleportation

By connecting a cup with a cap, we obtain the well-known protocol for quantum teleportation [42,

43].

Figure 2.6: Quantum teleportation. (a) By connecting a cup with a cap, we obtain the protocol for
quantum teleportation.

Note that for the quantum teleportation protocol to work, classical communication of two bits
is required. If classical communication is prohibited, 1/4 of the chance that the correct quantum
state will be teleported. The ensemble of the 1/4 correct teleported state and 3/4 wrong states is
equivalent to a maximally mixed state. This reminds us of the probabilistic nature of the scattering
events in QED. We’ll come back to this problem later.

Now that we have finished with the entanglement part, we are moving on with quantum sensing

part by introducing the single qubit sensor.
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Figure 2.7: Single-qubit sensing protocol. (a) Single-electron spin as a sensor for the magnetic
field. The electron spin is altered after interacting with the unknown magnetic field. From the change
of the spin, we could extract information regarding the magnetic field. (b) The single-electron
sensor can be abstracted as a qubit applied with an unknown rotation and a projective measurement.
This is the single-qubit sensing protocol.

2.5 Circuit QED and the Single-qubit Sensor

Superconducting transmon qubits coupled to resonators allow researchers to engineer interactions
reminiscent of QED, but on energy scales and physical sizes that are manageable in a typical

laboratory.

2.5.1 Single-Qubit Sensing Protocol

As a starting point, consider a single qubit used for parameter estimation. Conceptually, one can
imagine the sensor is an electron. We let the electron interact with an unknown magnetic field. The
electron spin will be rotated. The amount of rotation encodes the information about the magnetic
field. The schematic is shown in Fig. (2.7a).

Translating the elements into a protocol described by qubit states and rotation operators (Fig.

(2.7b)), the general workflow consists of three steps:
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Figure 2.8: Deficiency of single qubit sensor. (a) Maximum contrast is observed when the rotation
is along the z-axis. (b) Vanishing contrast is observed when the rotation is along the &-axis. We
will define the Fisher information in the next section.

1. State Preparation: Initialize the qubit in a known state, such as

1

’,T—i—) - \/5

2. Unknown rotation: Evolve the qubit with a rotation around an axis 7 by an angle a:

(10) +[1))-

U(a) = e tona/2 (2.7)
3. Measurement: Measure in a suitable basis to estimate «.

However, the single-qubit approach works well if one already knows 7. If 7 is unknown, the
initial state choice can become suboptimal. Despite the measurement being performed on the correct
basis, in our case, it is the Y basis, and depending on the rotation axis, the sensitivity varies. Figures
show the best and the worst-case scenarios that one would expect for a single qubit sensor. In the
best case, the rotation axis is perpendicular to the initial state, which produces maximum contrast
(Fig. (2.82)).

In order to quantitatively analyze the sensitivity of a sensor, in the next two sections, we introduce
the concepts of quantum and classical Fisher information and the associated Cramér—Rao Bound

[44, 45].
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2.6 Quantum and Classical Fisher Information

This section does not aim for a rigorous derivation but rather aims for a geometric approach
emphasizing intuitive understanding. For simplicity, we limit our discussion to pure states and
projective measurements. The important aspect to understand Fisher information we take is to
consider measuring the distance between quantum states.
Quantum states are vectors in the Hilbert space
W)= eli), 28)
i

with complex numbers ¢; = a; + ib,. For an N-level system, the index ¢ chooses an integer value
from 1 to N —1. Combining the real and imaginary components, the Hilbert space can be considered
as a 2/ N-dimensional manifold. The Hilbert space is equipped with an inner product, which provides

a natural way to calculate the length of a vector

P =Al))* =4 () =4) |l =4 (af +0), (2.9)

where 4 is a scaling factor added for convenience.
The simplest way to compare two states is to calculate the difference between them and get
the length of the difference. This motivates us to define the prototype of the distance between two

states as
AP = 4]|¢) — o). (2.10)

Distance is a useful concept because it allows us to quantify how different two states are. From

the above expression, we obtain the prototype of an infinitesimal distance between quantum states
di? = 4 (dy|dy) . (2.11)

However, the distance defined above is too coarse and includes certain nonphysical effects. In
order to understand the problem, we take a deeper look at the Hilbert space. To work with physically

meaningful states only, we need to impose the normalization condition (¢)|1)) = 1. In other words,
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Figure 2.9: Bloch sphere with the incorrect metric. The metric given by di? in Eq. (2.14)
corresponds to the upper hemisphere of radius 2. The state |0) appears as a single point with zero
length, while the state |1) appears as a circle with a perimeter of 4. Though the metric here shows
up as the incorrect option for the Bloch sphere, we will encounter the same metric in the next chapter
when we discuss the two-qubit maximally entangled states.

the quantum states live on a (2N —1)-dimensional sphere. In addition to the normalization condition,
the quantum state has a free global phase. The topological operation for removing these two extra

degrees of freedom is making all quantum states that are proportional to the same representative

quantum state |¢)) identified. Namely, the states

[¥2) = AlY), (2.12)

with some complex numbers A are regarded as the same state as |1)), like gluing them into a single
point. The collection of such representative states {|v)) } forms the projective Hilbert space.

The most familiar example of a projective Hilbert state is the Bloch sphere [43]. We consider

the single-qubit representative quantum states
0 .0
]w>:cos§|0)+el¢sm§]1), (2.13)
with the differential
1 .0 , 0 ... 0
|dy) = 3 (— sin o 0) +ei? cos 3 |1>) dé + 1e‘¢sm§ 1) do. (2.14)
The infinitesimal distance is written as

dI? = 4 (dy|dey) = d6? + 4 sin? gd¢2. (2.15)
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Figure 2.10: Metric in the projective Hilbert space. In the triangle, the hypotenuse dl is longer
than the bottom leg d.S due to the contribution from the geometric phase 2 d~y. The metric dS? is
also known as (4 times of) the Fubini-Study metric [46]. Despite the curious visual similarity with
the Minkowski metric Eq. (1.6) in the minus sign, we need to be cautious because here d.S? given
by Eq. (2.19) is positive definite.

However, the metric defined by Eq. (2.15) appears to be incorrect. One way to see the problem
is to calculate the perimeter of the circles of constant latitude.

T 0 0
l:/ 281n§d¢:47rsin§. (2.16)

—Tr

At the north pole, # = 0, [ shrinks to 0, as expected. However, at the south “pole” where 6 = T,
we have | = 4m. The geometry faithfully respects this wrong metric would be a hemisphere with a
radius of 2 (Fig. (2.9)).

The problem is that when we are transporting the quantum state on the Bloch sphere, the attached

phase is also evolving. This is the geometric phase [46, 47]

dy =i (y[de)
(2.17)
= Aydf + /14) do,
where
"49 =1 <¢|80w> = 07
(2.18)

Ay =1(y|040) = sin® g
are the components of the Berry connection [46]. The value of the Berry connection is dependent
on the choice of the representative quantum states, also known as the gauge dependence.

Since the change in the global phase does not generate a physically measurable effect, we need
to subtract the contribution from the geometric phase

dS? = di? — 4dy? = 4((dy|dy) — | (¥[dy)[*). (2.19)
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Figure 2.11: Bloch sphere. Each quantum state of a single qubit is mapped to a point on a unit
sphere. Every point on the sphere is attached with a circle of perimeter 47 encoding the global phase
of the qubit (the size is not up to scale in the figure). The fact that a 47r-rotation is needed to recover
the qubit in its original global phase is a property of the spin-1/2 structure. The combination of the
Bloch sphere and the circles in this setting is homeomorphic to S2, a geometric mapping known as
the Hopf fibration. S® with each of these circles identified as a single point produces the Bloch

sphere.

For a qubit, we have

6

dS? =d#? +4 <sin2 g — sin? 5) d¢? = d6? + sin® 0 d¢?, (2.20)

which is the usual metric on a unit sphere.

We connect the geometric concepts with classical probability distribution with a set of angles

P, = |(i|y)]* = cos? % = %(1 + cosd,). (2.21)

Geometrically, these angles are given by the length of the shortest path connecting |¢) and |i).
These paths are also called the geodesics. The geodesics in the projective Hilbert space are arcs cut
from the great circles, which makes the calculation of the length particularly easy. Although the
projective Hilbert space is not a sphere, in general, we could use the Bloch sphere to demonstrate

the idea. Two states separated by an arc length equal to 7 are orthogonal to each other.
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Figure 2.12: Geodesic on the Bloch sphere. Geodesics are special kinds of trajectories on a
manifold. On the Bloch sphere, a geodesic is the great circle with 27 perimeter. For any two distinct
states |¢) and |¢), there is a unique great circle passing through both of them. The length of the
minor arc connecting them defines their distance S from each other. Generally, by reading the
length of the trajectories, the value of the quantum Fisher information can be obtained. Particularly,
the trajectories with maximal quantum Fisher information are the geodesics.

These angles satisfy the constraint,
20, 1
1 :;Pi :Zcos 5= 5ZZ_:(lJrcosei). (2.22)
Differentiating the above expression gives us the constraint on the infinitesimal changes,
) “sind,; df; =0. (2.23)
i
The quantum state has the general form

)y = el cos% by (2.24)

7

with the differential
|dy) = E (—1 sin &dO- + i cos &dgzﬁ-) el i) . (2.25)
- 2 2 " 2 "
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We proceed with calculating the distances

di? = 4]|dy)|”
0. 6. (2.26)
_ 2 Y% 192 2% 3.2
= Z sin Edei +4 Z cos 5d¢i .
The contribution from the geometric phase
dy® = |(wldy)[’
2
= ; cos - (—5 sin 5 df; + i cos 5 dgbi) (2.27)
1 0, ?
= ’zl: <_Z sin6,df, + i cos? 5’ dgzﬁl-) .
Using Eq. (2.23)
2
0.
dy? = 2 Ldg,
77 =[S S
o, 6, \[
= ‘Z (COS - " cos Ed@)
t (2.28)

< (Z cos? %) . (Z cos? %dqﬁ?)

(3

0.
_ 2 Y% 3.9
= EZ cos ngbl,

where the upper bound is evaluated with the Cauchy-Schwarz inequality. The inequality is saturated

only when the vectors cos(6,/2) and cos(6,/2) d¢, are proportional, namely
0, 0,
cos Ez d¢, = cos EZ d¢, (2.29)

for some infinitesimal change in the global phase d¢, ruling out any contribution from the relative

phases. In fact, this condition simply implies dy = d¢.
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dS? = di? — 4dr?
:ZSiHQﬁd92+4ZCOS2&d¢2—4 :
i 2 i 2

ZCOS2 % do,
> anﬁ % do? (2.30)
= Z (2dcos Z>2

— i 5

-y (2ayE)”

This motivates us to define another metric for the manifold of probability distributions.

ds2 =3 (2dyB) =3 d]];’? (2.31)

The summary is below

ds?
ds? 4d~?
2 2 2
Distance from Distance from Distance from
di? = + +
Probability distribution Relative phases Global phase

o Classical Fisher information F'

o Quantum Fisher information F

(2.32)
In order to relate the geometric distance with measurable quantities, we parameterize a trajectory

in either space with a. The expressions are

Py = Pi(a), [) =[va), (2.33)

with the differentials
dP, =0, P,(a)dex, |d) = |0, %,,) dav. (2.34)
The rate of change ds/da and dS/d« could be understood as the analogue of a velocity. The square

of this velocity is defined as the classical Fisher information

_(dsY Ly PuPi)
Fo = <da> N 22: P(a) 235)
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and quantum Fisher information [48-50]
ds\? dl\? dy
Fo=|—) =|—) —4 0,0
“ (da) (doz) (da) H(OatalOata) =
Eq. (2.32) implies ds? < d.S2, which results in

F,<F

o*

ba)l?).

(2.36)

(2.37)

In the next section, we relate the left-hand side, the classical Fisher information, with the variance

of an unbiased estimator by establishing the Cramér—Rao Bound.

2.7 Cramér—Rao Bound

We can reinterpret the classical Fisher information F, as follows:

F, =) =t ZP ( ) ZP

i

(ap

where E[-| denotes an expectation value, and

is a statistical quantity called the score. The score has a zero mean:

BlVi(@)] = Y P 2~ 5 S pa)

Hence, F, is the variance of V,(«):

F, =E[Vi(a)’] = E[Vi(e)]” = var[V,
Next, consider an unbiased estimator & of
Ela] = a.
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(2.39)

(2.40)

(2.41)

(2.42)



We calculate the covariance between V;(a) and a:

cov[Vi(a), &] = E[Vi(a)d] — E[Vi(a)] E[d]

=> Pl —8?3].3(()(5) G = 0,) Pla)a

~9,E[6] = 1.

«

Using the Cauchy—Schwarz inequality on cov[V, &]:

1 = (COV[V,&])2 < var[V]var[a] = F,var|ad],
which implies
ar[a] > !
varld] = .

«

If the experiment is repeated NV times, the bound generalizes to

[A]>L
var|jo| > NE

[e%

the standard Cramér—Rao inequality for an unbiased estimator over N samples.

(2.43)

(2.44)

(2.45)

(2.46)

Hence, these definitions and properties establish the key tools for analyzing the performance

limits of a quantum sensor. In the next section, we will apply this framework to a single-qubit

sensing protocol.

2.8 Generalized Uncertainty Principle

Following the velocity analogue, we could write down the analogue of a Schrodinger equation for a

parameterized trajectory
10, 1a) = h[¥s)

where the Hermitian operator h is the generator of the evolution operator

U —iha

a:e
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We have

2
(%) = 4(0,%al0atha) = 4 (Yol R2|ta) = 4 (h?) (2.49)
and
? ~ ~
(%) = |($aldutiall” = | <%\h!%>\2 = <h>2 (2.50)

The quantum Fisher information is four times of the quantum mechanical variance of the operator

F, = (%)2 4 (%)2 =4 ((h?) - <B>2) — 4 (AR)?. 2.51)

Combining this with the Cramér-Rao bound gives rise to the generalized uncertainty principle.

AaAh > (2.52)

N | —

where Ao = +/var a is the uncertainty of the estimator &, which originates from a statistical
perspective. While Ah is calculated from the expectation value of an operator, which is of quantum
mechanical nature. This expression brings together the conjugate pair consisting of seemingly

different types of quantities in a unified, symmetric manner.

2.9 Single Qubit Sensor
We consider a general qubit state in the x-2-plane parameterized by angle )\,
|tho—o) = cos % |0) + sin% 1) . (2.53)
To simplify the problem, we choose the rotation axis also within the Z-z-plane:
n =sinfx + cosf z. (2.54)

The corresponding rotation operator is

o ..« I € 2
COS§—ISIH§COSQ —1sm§sm€
U, =R;(a) = o o o . (2.55)
—isinESiHQ COS§+iSiH§COSQ
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Figure 2.13: Single-qubit sensing protocol on the Bloch sphere. (a) The blue and red solid lines

represent the possible initial states. The green line represents the rotation axis 7. The blue dashed

line represents the qubit state after m-rotation. The purple circle represents the trajectory of the qubit

state during the rotation. The perimeter of the circle is 27|sin(f — A)|. The purple arrow represents

the vector tangent to the circle at the initial state. The tangent vector is always along the 4+y-axis.

(b) The same geometry represented in the &-2-plane for clarity.

After the rotation

|¢a> = Ua |wo¢:()>

«

o A Q

2 2 2

[ o S
4+ |COS —SsIn — — 1 Sin — sin
2 2 2

(6] .«
= cos — [1,_o) +sin = |¥,_)

2 2

where
A

[Yoer) = —i [cos (9 - 5) 0) + sin (e - %) \1>] .

2

I A
= |cos — cos — — 1 sin — cos (9—§>} |0)

-2

_ ) \
= (cos% —1i Sin50059> cos 5 — i sin%sianin 5] |0)

+["O"e A+( © 4 isin2 9)'A}|1>
— 1 S1n — Sin — — 1 S1n — m —
S 25 COS2 COS S 2COS S 2

(2.56)

(2.57)

The quantum and classical Fisher information are calculated in the following subsections.
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2.9.1 Quantum Fisher Information

The quantum Fisher information can be calculated in multiple ways:

1. Evaluating Eq. (2.36) directly

We calculate the derivative

N |

0,4100) = .

We first calculate the inner product

<¢a20|¢o¢:ﬂ’> =—1 COS(Q - )\>

Next, we calculate

(%)2 = 40,00l 00a) = 1,

and

dy _ . 1 N
@ =1 <walao¢wa> ~ 9 COS(H >\)

The quantum fisher information is calculated
dl \? dvy 2
= —_— —4 —_— = sl 2 — .
7, (da) (da) sin“(0 — \)

2. Using the generalized uncertainty principle

Alternatively, one could use the generalized uncertainty principle with the generator

}\L:

o-n= 5 (sinfo, + cosbo,)

N | —

We calculate the expectation values with regard to the initial state |,,_)

=7

B~ =

() -

37

(=sin 5 [ao) + 008 5 [t0a_r) )

(2.58)

(2.59)

(2.60)

2.61)

(2.62)

(2.63)

(2.64)



where [ is the identity operator, and

~ 1 .
<h> =3 (sinf(o,) + cosb (o))
= 1 [28111«9siné cosé + cos @ <cos2 é — sin? é)}
2 2 2 2 2
1
=35 (sin@sin A + cos @ cos \)
1 cos(f — \)
2

We arrive at the same value
Fo=4((2) = (B)?) = sin2(0—

3. Measuring the length of the trajectory geometrically

After every a 27 rotation A« = 2, The perimeter of the circular trajectory is
AS = 27sin(8 — N)|,

Comparing these two lengths, we arrive at

F = (%j)g = (w)z = sin?(6 — \).

« 27

(2.65)

(2.66)

(2.67)

(2.68)

The result shows that the quantum Fisher information is independent of the rotation angle « but

1s sensitive to the relative alignment between the rotation axis and the initial state. The maximum

value &, = 1 is only achieved when rotation axis and the initial state are perpendicular with each

other on the Bloch sphere ( — A\ = 4+7/2) [49, 51, 52]. However in the worst case where the initial

state and the rotation axis are aligned or opposite (¢ — A\ = 0 or 7), the quantum Fisher information

completely vanishes.

In order to experimentally obtain the quantum Fisher information, we need to perform measure-

ment in a chosen basis. From the resulting probability distribution, we could extract the classical

Fisher information.
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2.9.2 C(lassical Fisher Information

From the Fig. (2.13a) we see the circular trajectory always starts with a tangent vector in parallel
with . This indicates the y-basis can be chosen as the measurement basis. We check it with the

calculation. The Y eigenbasis is defined by

) = 5(10) = 1 1) (2.69)
[Va) = Uq [¥a=0)
= [cos % cos % — i sin % cos (9 - 3)] 0) (2.70)
+ [cos%sin% — i sin%sin (9— i)} ).

We calculate the probability of the measurement outcome

2

Py (o) = [(y+[va)l
1 Qo AL« <9 A)_ o . A ,a_(e )\)

=3 00820052 181n200s 5 1c08251n2 sm2$1n 5

1 o« al . A A A\ . A
—5{1—281H§COS§[Sln(9—§>COS§—COS<0—§>SIH§]}

= % [1 —sinasin(f — \)]

2

(2.71)
and
P, (a)=1-P, (a) = % [1 4 sinasin(f — \)] (2.72)
The classical Fisher information
2 2
P | P, )]
: P y+( a) P, (a)
_ 1[ cos?asin®(0 — \) cos? asin?(6 — \) 2.73)

" 2[1—sinasin(@—A) ' 1+sinasin@—\)
_ cos?asin (9 A)
~ 1—sin®asin?(d — \)

From the result, unlike the quantum Fisher information, the classical Fisher information is

dependent on both o and (6 — \). This is because the optimal measurement basis in dependent on
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Figure 2.14: (2.8) Single qubit sensing. Blue curve shows when the initial state is along the z-axis
(A = 0), and the Red curve shows when the initial state is along (£ — &)/v/2-axis (A = —7/4).

«. Fortunately, the maximum value is always achieved near o = 0 or 7, where the quantum fisher

information is achieved.

2.9.3 Experimental Investigation for the Single Qubit Sensor

In order to experimentally test the ideas, we use superconducting transmon qubits.

We use curve fitting

P, (a) = A+ Bsin(a + ). (2.74)

y—

with P, (o) =1 — P,_(«). The experimentally measured Fisher information is

0.P,, ()] [0.P, ()]’

F,=+2%
Py+ (a) Py— (Oé) (2_75)
_ B?cos?*(a+9) B? cos?(a + 0)
A+ Bsin(a+9) 1—A— Bsin(a+0)
The point with the largest slope is & = —4§, from which we extract the Fisher information
B2 B2 B2
F=F, s=—+ (2.76)

A T1-A4 A1-A4)

F'is a function of # because it is dependent on the rotation axis.
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Figure 2.15: Basis independence of the singlet state. Projecting one of the qubits in a singlet state
will always puts the other qubit in the orthogonal state (with a possible change in the global phase).

Even if the measurement basis is optimally chosen, the optimal initial state has to be dependent
on the rotation axis. Without knowing the optimal initial state, one can learn about the rotation
through quantum-process tomography [43, 53—-56]. However, process tomography requires many
applications of the rotation. Is there an approach to exploit the CTC to determine the optimal initial
state after the rotation axis is revealed at a later time? In order to understand this, we first examine

the rotational invariance of the singlet state.

2.10 Rotational Invariance of the Singlet State

The singlet state is defined as

1

V2

Singlet state has the basis independent property. In order to see this, we define the unit vector

) (10) [1) = [1)]0)) . (2.77)

b = sin 6, cos ¢, & + sin 6, sin ¢, § + cos b, 2. (2.78)
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The eigenstates of the Pauli operator o - b are

|b+) = cos— |0) + el sm |1>

. . 2.79)
Ve by gin b %1
|b > e bSln2|0>+C052|>7
which define a orthonormal basis. The singlet state in this {|b+)} basis is written as
1
Uy = — (|b+) |b=) — [b—=) b+
W) \/5(\ ) [b=) —[b=) [b+))
L KCOS % |0) + ¢! %0 sin \1>) (‘ei% in 0) Feos ’1>>
NG 2
_ <_ei¢b sin O |0) + cos by \1>> (cos O 0) + el® Siﬂ% |1>>
2 2 2 2
1 . 9 6 0
_ 7 |:<_e—1¢b sinib oS ?b 0) [0) + cos? ?b 10) 1)
5 (2.80)

0 4 0 0
— sin? 513 1) |0) + e!® singbcos?b 1) |1>)
: 0 6 6
— (—e‘¢b sin;b Cos Eb 0) |0) — sin? gb |0) 1)
0 . 0 0
+ cos? 517 1) |0) + e ¥ sin;bcosgb 1) |1>)]

1
- ﬁ(|o>|1>—|1>|0>>,

which is the same as the singlet state defined in Eq. (2.84). This diagramatic representation is

shown in Fig. (2.15).

The rotation operator along the b-axis is

Ry (o) :ICOS%— ia-BsinE

- Cos% (|b4+) (b+] + |b=) (b—]) — i sin% (|b+) (04| — |b—) (b—|) (2.81)

= e 12 |b4) (b+| + e1¥/2 [b—) (b—]|.

Applying simultaneus rotations on the two qubits

[Ry (@) © By (a)]] [¥7)
1

= E (e*i“/Q b4) et/ |p—) —el/2 |p—) e~ 1a/2 |b+>) (2.82)

= |\Il_> ’
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UU)|T) = = (detU) = (det U) | T™)

) )

Figure 2.16: Rotational invariance of the singlet state. The singlet state is unchanged after
simultaneously applying the same unitary operator on both of the qubits (up to a global phase).

where ® represents the tensor product. For arbitrary unitary with an extra phase factor U = e!¢ R,

Eq. (2.82) is correct upto a global phase
(UU)|Vv™) = (detU) |¥7), (2.83)

where det U = e21¢ is the determinant of U.

2.11 Hindsight Sensing Protocol

We exploit the basis independence property of the singlet state to prepare the optimal initial state
for the probe qubit.

The system consists of a probe qubit and an ancilla qubit. They are prepared in a singlet state

) = = (100, 10, ~ 11, 10),)- (2.84)

2.11.1 Protocol Outline

The Hindsight Sensing protocol proceeds as follows:

1. Initial Entanglement: Prepare two qubits (probe + ancilla) in the singlet state | ¥ ™).
2. Unknown Rotation: Apply the unknown unitary U, to the probe qubit.
3. Axis Revelation and Measurement: Once 7 is revealed at ¢, perform a projective measure-

ment on the ancilla qubit in the basis aligned with 7.
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4. Time Reversal Interpretation: By the diagrammatic rules, this measurement outcome is
fed back to the probe’s initial state at ¢, effectively ensuring the probe was prepared in the

optimal initial state for the now-known axis n.

2.11.2 Experimental Observations

In our transmon qubit device, we initialize the two qubits in the singlet state.

This means if we perform a projective measurement on the ancilla qubit in {|b=+)}, we have two
equally possible outcomes. If the ancilla is measured to be |b+), the state of the probe is set to be
|b—). And if the ancilla is measured to be |b—), the state of the probe is set to be |b+). In this way,
we could use the ancilla qubit to effectively alter the state of the probe qubit, even after the rotation.

and implement the rotation U («). We then measure various correlation observables.

A key experimental finding is that single-qubit expectation values of the probe remain essentially
zero, indicating that all the relevant information about « is stored in the two-qubit correlations.
Shown in Fig. (2.17b).

By choosing the ancilla measurement basis based on 7, we detect a near-constant Fisher
information over a wide range of n. The measured value ~ (.82 approaches the theoretical
maximum 1 for a single qubit, outperforming the single-qubit protocol in which the axis is unknown
at the outset.

What if the rotation axis is never known?

2.12 Agnostic Sensing Protocol

We first consider the case where no rotation is applied on the qubit. The system is prepared in the
single state | ¥ ™), and projected back to (¥~ |. This could be understood as the analogue of a CTC.
The probability will always be 1 (Fig. (2.18)).

Next, we consider adding a rotation. As is shown in Fig. (2.19a)
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Figure 2.17: Hindsight sensing. (a) Schematic for the hindsight sensing protocol. (b) The expecta-
tion value of the single-body Pauli operators vanishes.

2.12.1 Concepts

The Agnostic Sensing protocol removes the requirement that n is revealed at any stage. Here:

1. Startin [U7).
2. Apply U(«) on the probe qubit.

3. Close the loop by projecting back into |¥~) for both qubits, effectively forming a closed
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)

Figure 2.18: Entanglement analogue of a CTC. By connecting a cup with a cap, we prepare
the system in an entangled state, let the two qubits wait for some time, and perform a projective
measurement which collapse the quantum state into the same initial entangled state. Without
additional interactions, the probability will be 1. Alternatively, this diagram can be interpreted as
one qubit traveling forward and backward in time, following a closed time-like curve.

time-like curve without explicit knowledge of .

Because the qubits begin and end in the same entangled state, any change in the probability of

returning to | ¥ ™) directly encodes «v. This global effect is axis-independent.

2.12.2 Results and Performance

Experimentally, we measure the probability that the two-qubit system returns to |¥~) after the
unknown rotation U («). Fitting this probability over varying « provides the Fisher information,
which averages around 0.72. While slightly lower than the hindsight protocol, it still surpasses the
best classical ancilla protocol bound of % This shows a clear quantum advantage in the axis-agnostic
scenario.

Figure 2.20 shows a simplified illustration of how the return probability changes with a.. The
experimental points (blue circles) closely match the theoretical model (red line), demonstrating

consistent axis independence across multiple rotation directions.
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Figure 2.19: Agnostic sensing protocol. (a) Schematic of the agnostic sensing protocol.
2.12.3 Finite Fidelity

In the presence of finite state fidelity, the Fisher information degrades. We define the fidelity of

quantum states p with respect to a target quantum state o as

5= <tr pﬁp)z (2.85)

In our case, the target state is the singlet state o = | U~ ) (¥~ |. We model the realistc quantum state

to be an incoherent mixture of the singlet state and a maximally mixed state.
1
p=FN T+ (1 =5 — 7)) (2.86)

The Fisher information is calculated as

- _ (1 —4F)?sin® a
Fo = [—5 4+ 28 + (=1 + 4F) cosa] [1 4+ 2§ + (—1 + 4F) cos a] (2.87)

We find the Fisher information is highly sensitive to the infidelity of the input state. Especially,
the Fisher information vanishes near o = 0 or 7 for realistic entangled state with arbitrarily small
infidelity. This motivates us to consider whether we could circumvent this drawback. We will come

back to this problem in the next chapter.
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Figure 2.20: Finite fidelity. The curves show the dependence of Fisher information with respect
to the fidelity of the singlet state. The different fidelity values of the singlet state are labeled by
different colors and line styles.

2.13 Classical Ancilla

The optimal classical approach is given by a classical ancilla protocol. The density matrix has the

general form of
p=2_p; ) (vl @il (2.88)
where p; satisfy J
Z p; = 1. (2.89)
J

For our case, the optimal classical ancilla state could be chosen as
1
po = gzt e+ @ (L] + [y+)(y+ @ |2){2] + [e4) (4 ® [3)(3]) (2.90)

The classical upper bound for the Fisher information is 2/3, which could be intuitively understood

(Fig. 5.11).

2.14 Summary

Our experimental data and theoretical analysis confirm the following:
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Figure 2.21: classical ancilla. Intuitively, only 2/3 of the chance the initial state of the sensor is

sensitive to an unknown rotation. The quantum Fisher information of a classical ancilla approach is
2/3.

* Single-Qubit Sensing fails to maintain optimal sensitivity when the rotation axis is unknown.

* Hindsight Sensing allows near-maximal Fisher information (&~ 0.82) by postponing the
choice of measurement basis until after the axis is revealed.

* Agnostic Sensing achieves axis independence without any knowledge of n, exhibiting FI ~

0.72, above the classical ancilla limit of %

These results underscore the power of quantum entanglement for metrology tasks where no a

priori information about the parameter of interest is available.

2.15 Discussion

The last section is for a discussion of whether allowing quantum systems evolving backward in time
is physical.

The time as we perceive always flows in one direction. One would wonder, how would evolution
along a closed time-like curve possible? The seemingly contradiction comes the from the fact that
we are working with a system dominated by quantum mechanical evolution of pure states. This
assumption is both true for QED and the cQED when the environmental couplings are neglected

during the timescale of interest. In order for irreversible effects to become manifest, we would need
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Figure 2.22: Arrows of time. There are at least three arrows of time: the direction in which disorder
increases, the direction in which we perceive time passes, the direction in which the universe
increases in size (Stephen Hawking) [57].

to consider a larger system, where the dynamics of open quantum systems and thermodynamical
laws come to play. An large ensemble in the nature tend to behave in an irreversible fashion.

On the other hand, if we work with such a near-ideal quantum system, evolution backward in
time should be considered as a type of resource that we could exploit. We have presented the idea of
the metrological advantage achievable with closed time-like curves. More applications potentially
exist.

In chapter one, we introduced the quantization of flux which could be considered as a closed
time-like curve. We can make a comparison of them. The CTC we in counter in superconderctors

is protected by the thermodynamics. Because it’s energetically infavorable to break the order
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parameter of the superconductor. However, here in this chapter, CTC is implemented with quantum
gates and quantum measurements. The difference is, the latter one is not protect by thermodynamics.
The condition of the system ends up in the singlet state is probabilistic rather than deterministic.
In principle, it should be possible to engineer energetically favorable type of CTC for qubit case
by engineering a corresponding order parameter. The existence of such type of CTC in a quantum

system and potential applications remain to be explored.
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Chapter 3: Tri-axis Sensor States

3.1 Introduction

We introduce the tri-axis sensor states in this chapter with three motivations: Though ideally, every
maximally entangled two-qubit state, including the four Bell states, produces a similar metrological
advantage predicted by quantum Fisher information, they become less sensitive approaching the
probabilities P = 0 or P = 1. They are most sensitive at P = 0.5, where the rate of change is at
the maximum. This motivates us to align this sensitive zone with small-angle rotations. In addition,

the rotation measured by Bell states has sign ambiguity. The previous protocols does not resolve all

Figure 3.1: Ball of two-qubit maximally entangled states. Each point in a ball of radius 2
represents a two-qubit maximally entangled state. The surface of the ball is assigned to the triplet
states. Specifically, the three pairs of antipodal points—corresponding to the directions +&, 4y,
and +Zz—are associated with the Bell states |®~), |®*), and |¥™), respectively. These points are
connected by circular arcs of length 7 on the surface, indicating the mutual orthogonality of the
corresponding states. The singlet state | ~) is located at the center of the ball.
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three components of the rotation, simultaneously. In order to circumvent these three drawbacks, in
this chapter, we propose the tri-axis sensor states. In order to obtain an intuitive understanding of

the states, we investigate the properties of the two-qubit maximally entangled states.

3.2 Two-qubit Maximally Entangled States

We parametrize the two-qubit maximally entangled states by («, 6, ¢). Applying rotation of « along

the axis specified by the spherical coordinate 6 and ¢ on the first qubit of the singlet state

V(a,0,9)) = [R(a,0,¢) @ ] [¥7)

1 .
= —|:(COS% — i sin%cos@) |01) + ie*”ﬁsin%sinel()())

3.1)
— ieid’sin%sinmll) — (COS% + i sin%cos@) \10)]

= COS% W) — i sin%c089|\11+> + i sin%sin@cosqﬁ@_) + Sin%sinesingb|q)+>

These states are maximally entangled states because any local unitary operation [R(«, 6, ¢) ® I
is unable to disentangle the singlet state. We examine the above expression by calculating a few

special cases. We start with the trivial case where o = 0,
[(0,0,¢)) =[¥7), (3.2)

The qubits remain in the singlet state, as expected. Next, we consider the triplet states obtained by a

m-rotation along an arbitrary axis defined by # and ¢
| (7,0,¢)) =—1cosf|¥T) + isinfcosp|P )+ sinfsing|PT) . (3.3)

The result is a 2-dimensional sphere spanned by the three Bell states {—i|¥1) i|®~),|DT)}.
Moreover, the sphere is parameterized by the usual spherical coordinates (6, ¢) after the extra phase
factors are omitted. This fact motivates us to visualize these three triplet states on a sphere. We align

the triplet states with the {Z, g, 2} unit vectors in a usual Cartesian coordinate system, respectively.
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We define this sphere (o« = ) together with its interior (0 < av < ) the ball of two-qubit maximally
entangled states, or simply the 20MES ball.

Unlike the Bloch sphere, the 2QMES ball has peculiar properties that we will discuss. We
first calculate the radius of the ball. Recall from the Bloch sphere, orthogonal quantum states are
separated by 7 distance measured from the length of the geodesic. The triplet states are orthogonal
with each other, connected by quarter circles (of 7/2 radian) on the surface. By assuming the quarter
circles are the geodesics, we conclude that the radius of the ball is 7/(7/2) = 2.

The center of the ball is the singlet state, which should be orthogonal with all the triplet states.
However, the Euclidean distance between the center and the surface of the ball is 2 which is less
than 7.

The second peculiarity appears when we consider the pair of antipodal points on the ball. We

calculate

U (m,m— 0,0+ 7)) = icosf|UT)— isinfcoseg|P ) —sinfsing|®T) = —|V(7,0,0)).
(3.4)
The antipodal points represents physically identical states except for an extra global 7 phase
difference. Intuitively, this is because single-qubit 7 rotations along axes 1 and —n are equivalent
up to a minus sign. and In the next subsection, we explore the peculiarities of the 2QMES ball with

detailed calculations.

3.2.1 Measuring Distance in the 2QMES Ball

Following the same idea for the Bloch sphere

|d¥)
1 N a, . - oo
=3 —sm§|\If >+cos§(—1 cos@|Ut) + isinfcos|P) + sinfsing |[PT))| do

(3.5)
- sin% (isin@|U*) + icoshcosd|P) + cosfsing|PT))dl

+ sin%sin@(—i sing |[®7) 4+ cos @ |PT)) dop
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Figure 3.2: Stereographic projection of the equatorial plane of the 2QMES ball. The distances
labeled here are measured in the usual Euclidean metric of the Cartesian coordinates. The arc in the
upper hemisphere with length « is projected to the equatorial plane as a line segment of 2 tan(«/4).
Particularly, when o« = 7, the length of the projection is 2, which is equal to the radius of the
2QMES ball. The stereographic projection explains why the singlet state appears closer to the
triplet states in the 2QMES ball, though they are separated by geodesic distance of 7. Note that
the antipodal points in the equatorial plane represents the same state. By identifying the pair of
antipodal points here, we conclude that the equatorial plane has the topology of a two-dimensional
real projective plane RP2.

We calculate
A2 = 4)|dW)[* = da? + 4sin? % 462 + 4sin? %sinz 0de? (3.6)
The geometric phase seemingly vanishes
dy =i(¥|d¥) = 0. (3.7)

However, this does not imply the space is flat. We will discuss the geometric phase later. Combining
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Figure 3.3: Northern hemisphere map. A similar stereographic projection technique is employed
to create maps of the Earth. In this projection, the north pole is placed at the center while the equator
forms the outer boundary. Due to inherent map distortions, the circles of latitude (represented by
circular dotted lines) are not evenly spaced. On the map, geodesics appear as circular arcs (shown
as solid black lines) connecting pairs of antipodal points (marked by black dots) on the equator.
Although these geodesics share the same length on the sphere, they appear with varying lengths in
the projection.

the above derivation, we obtain
dS? = di? — 4d~?
— da? + 4sin? % 462 + 4sin? % sin? 0 dg? (3.8)
= da? + 4sin? % <d92 + sin? 9d¢>2) .
Although the (0, ¢) part displays spherical symmetry, this metric tells us the space is curved because

it differs from the metric of usual spherical coordinates.

ds?

sphere

= dr2 4 72 (62 + sin? 0d¢?) . (3.9)

In order to analyze this, it is sufficient to inspect one cross section, due to the spherical symmetry.

We choose the equatorial plane § = 7/2, where

dS? = da? + 4sin? %d(bz. (3.10)
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Based on our previous analysis Fig. (2.9), this is the metric of the hemisphere of radius 2. This

motivates us to use the stereographic projection to flatten this cross section.

T:2tan% G.11)

Another important feature of the 2QMES ball is the states does not include relative phase, which
implies

ds? = dS?, (3.12)

Measuring from the Bell basis, the classical Fisher information is always equal to the quantum

Fisher information.

3.2.2 Geodesics in the 2QMES Ball

Geodesics in the 2QMES ball are circular arcs connecting a pair of antipodal points. The special
case is the geodesics pass through the center of the ball, namely the singlet state |¥) . In this case
the arc becomes a straight line as the radius of the arc becomes infinite. The length of a geodesic is
always 2.

The 2QMES ball is topologically a three-dimensional real projective plane RP3.

3.3 Tri-axis Sensor States

3.3.1 Definition

The tri-axis sensor states are obtained by 27r/3 rotations along certain axes

2 1 3
aszg, COS%Zé, Sin%:\/?—. (3.13)

For example, the | S™*T) state, the axes are specified by 64, with

1 2
cosfg = 7 sinfg = \/;, tanfg = V2, (3.14)
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Figure 3.4: Geodesics in the 2QMES ball. The three solid lines in the graph are examples of
geodesics. Each connects a pair of antipodal points on the sphere, which represent the same quantum
state. Depending on its path, a geodesic appears either as a circular arc or as a straight line when it
passes through the origin (which represents the singlet state |¥~)). Notably, the three geodesics
chosen for this graph exhibit the same shapes as the three solid lines in Fig. (3.3). Regardless of
their appearance, every geodesic in the 2QMES ball has a length of 27. Specifically, the geodesics
shown in the graph correspond to the trajectories of quantum states undergoing rotation about the
z-axis, with the direction of rotation indicated by the arrow at the midpoint of each trajectory.

and the value for ¢

1
¢S:£, o gy = sindg = (3.15)

The other tri-axis sensor states can be obtained with 8 combinations of

2 3
|S>:’\I! (-”,95 or (1 — 0g), £~ or i—”>>. (3.16)
3 4 4
We represent these states in qubit and Bell basis as
1 . : : :
) = = [(1 = im.)01) + (im, +m,) 00) = (im, —m,)[11) = (1 + im.) [10)]
1 . . _
=5 (|\I/_) —im, |UT) + im, |P7) +m, |<I>+)) ,

(3.17)

where m,,, m,, m, are indices taking values from +1. Geometrically, the indices label the octant

y’
the state is located. For example, the m, = +1, m, = —1, m, = +1 tri-axis sensor state is
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Figure 3.5: Tri-axis sensor states. The Bell states are labeled with black x. The even (odd) tri-axis
sensor states are labeled with orange + (circles). The total eight tri-axis sensor states form a cube
inside of the 2QMES ball. In the stereographic projection, the edge size of the cube is exactly
1/3 of the diameter of the 2QMES ball. The two groups of tri-axis sensor states form two sets of
orthogonal bases, respectively. In other words, the geodesic distance between two tri-axis sensor
states with the same parity is 7. The geodesic distance between an even and an odd tri-axis sensor
state is 27/3. The geodesic distance between a tri-axis sensor state and a Bell state is also 27/3.

denoted as |[ST~T), inthe z > 0,y < 0,z > 0 octant.

m,, m,,, m, transforms when applied these of the three mirror reflection operators along each
x z pp P g

y>

axis in the 2QMES ball. For example

M, |StTT)=|5"7) (3.18)

M, = |01)(01] + |10)(10| + [11)(00| 4 [00)(11]
M, = [01){01] 4 [10)(10[ — [11){00| — [00){11] (3.19)

M, = —[10)(01] — [01)(10] + 00){00] + [11)(11]
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They could be alternatively represented in the Bell basis

M, = [U7) (0T[4 [T (U] — |[07)(@| + |07)(7|

xT

My = [9) (| 4 [0 (0| 4 [0 (| — [07) (@ (3.20)

M, = W) (U] — [UT) (U] 4 [@7) (&[4 |7) (O]

z

We also introduce the product of the three indices

m=m,m,m_, (3.21)

which also takes value from 4+-1. Even number of mirror reflections keep m unchanged, while
odd number of mirror reflections flip the sign of m. In this sense, we also call m the parity of the
tri-axis sensor state. The tri-axis sensor states with the same parity form an orthonormal basis for

the two-qubit states.

3.3.2 State Preparation

There is likely a family of them. For example, this one is constructed by applying a -120 degree

| .
rotation along the diagonal — (% + § + 2) axis after preparing |®*)

V3

1S") = % (|@F) +i|®7) +i|TH) + |T))
1 : . _ _ (3.22)
= 575 [+ D)100) + (14 1)[01) + (i —1) [10) + (1 = 1) [11)]

Since the entangled state prepared by our parametric drive is naturally closest to [¥"), we can

use this one

15) = 5 i19*) + [27) —[0%) +1]97)]
1 . . ' ‘ (3.23)
= 2—\/5[(1%— i)|00) + (i —1)]01) — (i +1)]10) + (i —1)|11)],

I
which is constructed by applying a 120-degree rotation along the diagonal ﬁ(x + 9y + 2) axis

Along an arbitrary axis, the quantum Fisher information is 1 due to symmetry.
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3.3.3 Classical Fisher Information

For z-rotations

cosay, /2 —isina,/2
U(0,,0,0) = . (3.24)
—isina,/2 cosa,/2

The probabilities for the Bell basis measurements

P(0,, ") = }1(1 +sinf,), (3.25)
P(6,, o) = }1(1 —sin6,), (3.26)
P(6,, ") = i(1 —sing,), (3.27)
P(6,,¥) = i(l +sind,). (3.28)

Although, for each of the single outcomes, the modulation of the probability is only half of the
amplitude compared with the single-qubit case. But considering the contributions from all of them,

the total classical fisher information

[0, P(0,,27)] N [0, P (0, 7)) N [0, P(0,, V)2 N (00, P (0, %))
PO, o") P(6,,®") P(0,,¥) P, v") (3.29)

=1,

Similarly, for y-rotations

cosf,/2 —sinf, /2
U(,6,,0) = v/ v/ . (3.30)
sinf,/2  cosf,/2

The probabilities for the Bell basis measurements

P(0, 8%) = 1(1 +5ind,), (331)
(6,3 ) = }1(1 +sin,), (3.32)
P, ) = i(l —sinf,), (3.33)
P, ") = i(l —sind,). (3.34)
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Easy to check
F=1. (3.35)
for z-rotations
6—192/2 0
U(0,0,0,) = . (3.36)

0 6192/2

The probabilities for the Bell basis measurements

P, ") = ;1(1 —sind,), (3.37)
1 :
P,,o7) = 4_1(1 +sind,), (3.38)
PO, ) = 3(1 sing,), (3.39)
PO, 0 ) = i(l +sind,). (3.40)
Easy to check
F=1 (3.41)

3.3.4 Quantum Fisher Information Matrix

We consider measuring the three components of a rotation simultaneously. We use slightly different

parameterizations for convenience.

o ioc-a . «

Ulay,a,,a,) = e loa/2 :Icos§ ——5 sing, (3.42)
where the rotation angle is a vector
a = (a,,a,,aq,). (3.43)
The magnitude of « is the rotation angle
a=lal= /a2 + a2+ a. (3.44)
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The coordinate transformation

o, = asinfcos ¢,

@, = asinfsin ¢, (3.45)

o, = acosh.

The differentials
dey,, sinfcos¢ «acosfcosp —asinfsing da
da, | = [ sinfsing «cosfsing asinfcos¢ de | - (3.46)
dor, cos 6 —asinf 0 de
The inverse relations
da sin 6 cos ¢ sin f sin ¢ cos da,
1 1 1
dd | = | —cosfcos¢p —cosfcos¢p ——sinfcosqo de |- (3.47)
o) o o) cos o v
do — Su'l _ 0 dar,
asin 6 asin 6

Due to spherical symmetry, we could choose an arbitrary direction. We choose a point along

the z-axis § = 7/2, ¢ = 0, which generates

do 1 0 0 da,
1
a0 =100 —=||da, (3.48)
Q
1
do 0 — 0 da,
«
The metric is
dS? = da? + 4sin® = (d6? + sin2 0 d¢?)
2 (3.49)
_ 2 2 2
=T pdag + 7 dag, + 7, dag,
with the coefficients are the entries of the quantum Fisher information matrix [58, 59]
F =1
o (3.50)
Fyy =T, = sinc2§
where
sincx = 2oL (3.51)
x
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Figure 3.6: Quantum Fisher information matrix for tri-axis sensor states. The horizontal
axis is the amount of the rotation along the &-axis. The blue solid line shows the quantum Fisher
information along the same axis, which is constantly 1. The red dashed line shows the quantum
Fisher information along the other two axes, which decreases as the amount of rotation along the
&-axis increases.

The diagonal components of the quantum Fisher information matrix are shown in Fig. (3.6). We
conclude that in the small angle limit, the sensor is equally sensitive to three components. The three
components can be estimated simultaneously. Once one of the components gets large (o > 7/2),
the tri-axis sensor becomes saturated, in which case the sensitivity regarding the remaining two
components decreases. In the deep saturation limit (o > 27), the sensor becomes effectively a
single-axis sensor. But this single-axis sensor still has the agnostic feature - no prior knowledge

about the rotation axis is needed for estimating the amount of the rotation.
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Chapter 4: Positronium Sensing

4.1 Introduction

So far, our discussion has been focusing on the probe-ancilla paradigm. Imagine a system with both
the qubits interacting with the unknown rotation, Is there a way we could gain an advantage? Let’s

briefly revisit the rotational invariance of the singlet states.

(U@UN) W) = (detU) (U? 1) V). 4.1)

Because the rotation is doubled, the Fisher information is boosted to 4.

t Ig &®

—

B

Magnetic
Field

e |\ J &
&,

Figure 4.1: Positronium sensing. A pair of electron and positron are generated in the para-
positronium state. Negelecting the orbital part, it is the singlet state. They interact with an unknown
magnetic field. From the rotation of the two spins, one could extract information about the magnetic
field.
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= (detU)™! = (detU)!

) U )

)

Figure 4.2: Rotation doubling on singlet state. Applying a unitary operation and the corresponding
Hermitian conjugation on both of the qubits in a singlet state is equivalent to applying the unitary
operation twice on one of the qubits (up to a global phase).

For the first part: in chapter one, we mentioned the charge conjugation symmetry for a super-
conductor. In this section, we utilize the charge conjugation in the context of a lumped element
superconducting transmon qubit, which provide us with a natural platform to synthesize the analogue
of a natural positron. For the second part, we employ the combination of quantum gates and AC
Stark effect.

Such model exist in the nature, which is the positronium. Is there a way to implement the
analogue of the positronium in the superconducting qubit? The task of implementing this analogue

can be decomposed into two objects:

* Define the positronium state.

* Applying the correct interaction.

4.2 Lagrangian and Hamiltonian Formulism of a Transmon
Circuit
The Lagrangian of the transmon circuit [60, 61] is written as

1
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where V; represents the electric potential of the two nodes, and E; is the Josephson energy stored
in the Josephson junction. An ideal lumped-element capacitor features the quasi-equilibrium of

electric potential and chemical potential !

0= —2eV, + p;, = —2eV;, — ho,0,, (4.3)
and h2C
h2 (44)

16EC<8 ,0)% + E;cos

where 6 = 0, — 0, is the phase difference across the junction and E = 2 /2C is the charge energy.
The Lagrangian exhibits the electron-hole symmetry inherent from the superconductor physics

discussed in chapter 1,

0——60, L— L. 4.5)
The conjugate momentum,
oL h?
= 0,0 = —h 4.6
8(0,0)  SE, ! " (46)

has the meaning of number of Cooper pairs tunneled through the junction. Performing Legendre
transform
oL

H = 200, 9)8 ,0 — L =4E-n? — E;cos b, (4.7)

The Hamilonian also has the electron-hole symmetry inherent from the Lagrangian
0——60, n—-n H-—H. (4.8)

The transformation above is also refered to as the charge conjugation.

The Lagrangian of the transmon circuit coupled to a voltage drive can be described by

1 1
L= —C’V2 + Ejcosf + §Cg [V —V, (1)

h2 1 h

IThis equation can be derived from Eq. (1.36) by neglecting the acceleration process of the Cooper pairs.
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The Hamiltonian of the transmon circuit coupled to a voltage drive can be described by

1 h 2
H = 4ECTL2 — EJ COS@ -+ §Cg (g@tﬁ -+ Vd(t)>

(4.10)
2eC
~ 4E-m? — E cos — Tgan(t)
where
o2
Eqo=—Fr——, (4.11)
2(C + C’g)

is understood as the total charge energy. We conclude that by changing the sign of 6 and n, the sign
of the coupling term is also reversed.
Under the charge conjugation, the lowest energy levels of a superconducting transmon circuit

transform as
l9) =19 ley = —le), |fy=1f), |n)——I[h),.... (4.12)

In the computational space spanned by the lowest two eigenstates, the above charge conjugation is
simply 7r-rotation along the z-axis. To sum up, 7-rotation along the z-axis on a superconducting
transmon qubit is equivalent to transforming an electron to a positron. However, the anti-transmon
state prepared in this way doesn’t yet allow us to reverse the rotation along the z-axis. In order to

tackle this problem, we introduce a simultaneous AC Stark shift tone on both of the qubits.

4.3 AC Stark Shift

The transmon Hamiltonian with the lowest three energy levels can be written as
H /1= wilg)(gl + g le)el +wy |- (4.13)

We couple the system with an external off-resonance microwave drive with frequency w,. The total

Hamiltonian under rotating wave approximation is written as

H/h = wilg){gl +wgle) (el +wi 1) {f

+w,ala, + (g5 e) (gl a, + He) + (ge [ (el a, + He.),
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where “H.c.” represents the Hermitian conjugation of the prior term. The eigenstates of the coupled
Hamiltonian are called the the dressed states. Similar to the dispersive coupling, to analyze the

energy of these states, it suffices to investigate the following 3-by-3 matrix blocks

Wi+ (n+Dw, ggsvn+1 0
Hih=1 g¢iVn+1  wf+nw, gelym : (4.15)
0 gl wi+ (= 1w,

We introduce the Rabi frequencies when in resonance

08 = 20g%|Vn+1, QF =2g¢flVn+1. (4.16)

The Rabi frequency is proportional to the square root of photon number plus one [62].
The perturbation vanishes in the first order. We apply the second-order perturbation theory.

The shift in the qubit frequency is dependent on the number of photons in the w, mode,

2 2
A n+1l | <e7n|Hs|gan + 1>| _ |ggs (n + 1) 4.17
Wys = g s = — ( . )
Wq — wg + Wy Wge — Wy

| (g,n + 1|H,|e,n)[* L Hfhn— 1H,|e,n)[*

Aws ! =
! WZ_Wg_Ws wg—wg—kws

) of 2 (4.18)

Lo+ i

wge — W wef — Wy

We study the qubit transition frequency where the number of photons is unchanged
Awd® = Awentl — Aw97"+1
q gs qs

(4.19)

2
g’ @n+3) o (n+1)

Wge — Wy Wep— W

S

We assume the AC stark tone has large amount of photons, in which case n >> 1, we can approximate

e 2
e lgtPen+2) || (n+1)
e T W ey s (4.20)
(Q°)? (Q))?

B 2((’"}96 - ws> 4(wef - ws>,
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Since Rabi frequency is also approximately proportional to the square root of the excitation number

plus one for an anharmonic oscillator, we could use
Qs = v20ue (4.21)

To obtain the approximate formula [63]

Aw =~ (Q)* ( 1 — 1 ) (4.22)
wge s

g€ 2 — Wy Wep—w

Near resonance, the above perturbation result breaks down, but the influence of the AC Stark
effect generally exists. The qubit frequency under Rabi drive or gate operations is generally different
from the original qubit frequency determined by the Ramsey measurement. The amount of the
deviation is usually on the order of a few hundred kHz. This becomes one of the sources of the
phase errors. We will come back to this problem later.

For our experiment, we select a special frequency for the AC Stark tone which is able to induce
exactly an equal amount of frequency shift in opposite directions on the two transmon qubits. This
technique is used to implement opposite rotations along the z-axis for the two qubits. Combining the
AC Stark shift part with the 7-rotation along the z-axis, we implement the analogue of positronium
coupled to an external vector magnetic field. By utilizing this coupling involving two transmon

qubits, we achieved improved Fisher information value predicted by Eq. (4.1).
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Chapter 5: Experimental Setup

5.1 Device

The device is superconducting aluminum-based. The probe qubit is a fixed-frequency qubit, coupled
to a drive line and a readout cavity. The ancilla qubit is a flux-tunable qubit, coupled to a fast flux
line in addition to a drive line and a readout cavity. Both of the qubits are coupled through a bus

resonator. Physically, the two qubits correspond to two of the three qubits on the chip.

¢ Y

Ancilla Probe

-

Drive line

FFL line

Figure 5.1: Schematic of the device.
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5.2 Setup

We utilize superconducting qubits for the experimental research. The parameters are included in the

table Tab. (5.1). The low-noise amplification is assisted by a traveling-wave parametric amplifier
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(b)
Figure 5.2: (a) The chip design layout. (b) Microscopic image of the chip.

based on the SNAIL (Superconducting Nonlinear Asymmetric Inductive eLements) architecture

[64].
wq/2m (GH2) | [a|/27 (MH2) | x./27 (kHz) | w./27 (GHz) | k/27 (kHz) | T} (ps) | T3 (ps)
Ancilla 4.2 212 230 6.94 270 32 41
Probe 4.65 180 250 7.09 206 31 39

Table 5.1: Measured parameters of the device used in the experiment.
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Figure 5.4: 1Q mixer for up-conversion.
5.3 Mixer Calibrations

This section focuses on using IQ mixer for frequency up-conversion [65]. The output from RF port

can be modeled as

Vrp(t) = KiLip (1) Vo (t) — KQQ(t)VL/o (t) + GroVio(t), (5.1

where V1 g o () represents Vi (t) with ideally an 90° phase shift, V] ¢ 10, (t) represents the LO

leakage into Vyp. We focus on the case where the signals are approximated by monochromatic
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sinusoidal microwaves, in which case we can write down

Vio(t) = Apg cos(wiot),
V300,00(t) = Arosin(wiot + ér0,90) (5.2)
V0 1eak (B) = Ao cos(wrot + A10 1eak)

where in general, ¢;,6 99 = ¢1,0.90(wWro) F O for a realistic IQ mixer, which characterizes the
non-orthogonality of the I, () components. We also expect K| # K which characterizes the
imbalance of the two components. The non-orthogonality and imbalance cause the image frequency.
Non-zero Gy, characterizes the LO leakage.

The formula for the microwave signal generated by the arbitrary wave generator can be expressed

as

Iip _ Coo Co1 cos(wipt + ¢ p) Agy Ao Tnod n Inc . (53)

Qrp Cio Cpy sin(wipt + ¢p) Ay Ap Qmod Qpc

where I, 4(t) and Q.4 (%) could be undstood as the envelop of the pulse waveform. The amplitude
transform matrix A is for adjusting the amplitude and phase of the pulse. By choosing the appropriate
mixer correction C' matrix and DC components, we are able to cancel out both the LO leakage
and the image frequency. To simplify the problem, we assume the amplitude transform matrix
takes the simple form of an identity matrix, and the pulse only involves in-phase component

I(t) = A, ,q(t),Q(t) = 0. The above formula simplifies to

I 1 0 cos(wypt I
F | (wipt) A+ DC ’ (5.4)
Qp Gsinf Gcosb sin(wpt) Qpc
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Substitute Eq. (5.4) into Eq. (5.1), we obtain

VR

= K1 Ao [Amod cos(wipt) + Ipc] cos(wyot)
— KqAp o [GA,pq sin(wipt + 0) + Qpe] sin(wp ot + ¢r,0.00)
+ GLoArLo c08(wLot + ALO teak)

1
:EKIALOAmod {cos|(wp,o + wip)t] + cos[(wr,o — wir)t]}

2

1
+ S KQGALo Apoa {0s[(wio + wip)t + ¢1.0.90 + 0] — cos[(wro — wip)t + dro.00 — 0}

+ Aro [Gro cos(wrot + @10 1eax) + Kilpe cos(wrot) + KqQpe sin(wrot + ¢r.o.00) ]

(5.5)

To verify the set of parameters is able to simultaneously cancel the image frequency and LO

leakage, we apply

K
G=—
Kq
0= ¢LO,90’
Ine = — 210 ( t )
pC T TR COS PL,0 Jeak T tAN G190 ) 5
Ope = G0 sin ¢Lo,1eak
pe KQ COoSs ¢LO,90
With these values
Var = Agy cos [(wpo + wip)t — ¢Lo,90] ;
where

Arr = Ao Anea K cos ¢Lo,90-

We automatically optimize these parameters with optimizers from Nevergrad [66].

5.4 Heterodyne Readout

In the readout process, the mixer is used in the opposite way.
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Figure 5.5: 1Q mixer for downconversion.

Unlike homodyne measurements, hetrodyne measurement operates at non-zero IF frequency
which makes it more robust against low-frequency fluctuations in the setup. The essence of
Heterodyne measruement is the phase throughout the demodulation branch has to be consistent with
the readout pulse from the upconversion mixer. For homodyne measurements, this is could be done
by using the same microwave generator, and use a microwave splitter to allocate the power into
both of the LO ports of the input and readout mixers. For Heterodyne readout, the same technique is
employed. In addition, the phase of the readout pulse and the integration weights have to be either
fixed or consistently accumulating. Once setup, the readout record from hetrodyne measurement is
processed similarly to the method used in homodyne measurement.

Traditionally, the readout record is integrated over time to produce a pair of I and () values,
which is used to distinguish the quantum state of the qubit. To improve over this paradigm, we

could explore more details about the readout record.

5.5 Integration Weights

The readout record signal from the mixers is not featureless. It is structured with certain self-
correlation. This can be visualized by ploting the covariance matrix of the readout record. The
covariance matrix has non-zero off-diagnonal components, displaying correlated feature.

A customized integration weight is able to efficiently extract the information from the record by
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Figure 5.6: Readout optimization.

projecting it into the correct basis. In order to determine the integration weights, the algorithms we
have tested are principle component analysis and linear discriminator analysis.

After the integration weights are determined, we prepare a dataset. Half of the data is used as
the training set to feed into an opensource classifier. Two options tested to be exellent for two or
three qubits are Random Forest and Histogram Gradient Boosting from scikit-learn [67—71]. The

remaining half is used as the test set used to obtain the response matrix R.

5.6 Active Reset

After the readout of the qubits is calibrated, we could utilize the readout to perform more efficient
qubit state reset in a feedback protocol. With properly setting up the active reset, the initial state
fidelity should be better than the thermal equilibrium. Especially, through tuning the threshold,
given the readout is sufficiently stable, such advantage is observed without extremely high readout

fidelity (> 99%).
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5.7 Readout Corrections

The readout fidelity is represented by the response matrix R. The entries of R is defined as the
conditional probability

R, = P(measure i|truth is j). (5.9)

ij
We apply a method known as Iterative Beyesian Update (IBU) [72]. The response matrix is

tn+1

calibrated for the readout classifiers. The corrected probability distribution ;""" is calculated from

the iteration
= Z P(truth is ¢|measure j) x m
n (5.10)
Y
Z R]k‘tk j
where m; is the measured raw probablhty distribution without correction. The initial value ¢? could
be chosen as the uniform distribution. The iteration usually converges within 20 steps.
The key benefits of IBU are twofold. First, unlike direct matrix inversion, it gracefully handles
unphysical probability estimates (i.e. cases where P > 1 or P < 0). Second, since it is inherently

iterative, IBU can be implemented on FPGA-based hardware without reliance on full-fledged linear

algebra libraries.

5.8 Spectral Filtering for Pulses

We define the cosine pulse in the discrete form

2n+ )7

u(n)zl—COST, 0<n<N-—1, (5.11)
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Figure 5.7: Cosine pulse and the derivative. (a) The pulse waveforms u and v in the time domain.
Each waveform consists of 9 data points, sampled at 1 GHz sampling rate. (b) The Fourier transforms
of the pulse waveforms. The spectrum of v and v share the same set of zeros except for the origin
and the boundary. The zeros are displayed as dips in the logarithmic scale. The unit of the vertical
axis is voltage times nanosecond, the same as magnetic flux.

where N is the length of the pulse, and the pulse is defined to be zero when 7 is beyond the given

range. The Fourier transform is
N-1

u(w) — Z u(meﬂ'(2an+1)m/27

\]

=0
N-1
g Z <2 _ ei@nt)T/N _ o] (2n+1)7r/N> o—i(2n—N+1)wr/2
n=0

(5.12)

o ™ . Nwrt

Tsin ﬁvsm 5 <1—|—2(:os]£\[—|—cosw7')

. wT . <7r+w'r) . (7r wT)
sm2sm N 5 sin N 5 )

where j is the imaginary unit' and 7 is the sampling interval, usually taken to be 1 nanosecond

for a typical arbitrary wave generator. Physically, the real and imaginary part of the waveform
correspond to the in-phase and quadrature components of the signal, respectively. For convenience,
we have aligned the timing of the Fourier transform with the center of the time index.

We define a second function that is proportional to the time derivative of the cosine pulse

(2n+1)m

v(n) =2j sin , 0<n<N-1 (5.13)

"'We distinguish between i and j because the imaginary unit is often defined differently depending on the context.
For example, in quantum mechanics the time evolution is conventionally denoted as e~ !«?, while in engineering the
similar expression is typically denoted as el “?.

79



z ;;
1.5 e 10 ! !
S z /o
Q = -1 | ! |
:'é 1.0 élo i
= o !
Zos ERTO |

s

] g

0.0 g

. — | L
=500 =250 0 250 500
Time (ns) Frequency (MHz)
(a) (b)

Figure 5.8: Spectrally filtered pulse. (a) The real and imaginay part of the spectrally filtered pulse
w. The pulse is obtained as the linear combination of v and v through Eq. (5.16) with parameters
6 = —0.13107 and w, = —0.10357. These parameters are obtained with numerical optimization.
(b) The Fourier transform of w. The frequency component at the transmon anharmonicity o = —180
MHz is suppressed, as indicated by the red dashed line.

With the Fourier transform

N-—1
U(w) -7 Z U<n)e—j(2n—N+1)wr/27
n=0
N-1
=T (ej (2n+1)w/N __ e J (2n+l)7r/N) e J (2n—N+1)wT/2
2 (5.14)
N
27sin T cos il sin wr
N 2 2

_S, (7r+w7>s_ <7T_w7)
in{+5)sin{5—3
We could verify their ratio

v(w) _ _ 2sin wrﬂ (5.15)
u(w) tan — (1 +2cosﬁ+cosw7>

Which is non-zero except at w = 0 in the Nyquist zone |w| < 7/7, when N > 3. This means the
spectrum of u and v share almost exactly the same set of zeros. This nice property enables us to use
linear combination of v and v to cancel out a unwanted frequency component.

We define the pulse in the form of

w(N,0,we;n) = [cosd - u(n) +sinf - v(n)] el 2= N+1wor/2 (5.16)
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as the building block of more complicated pulses. The parameter 6 is determined by

u(w; — wp)

tanf = — , (5.17)

v(w; — wp)
where w; 1s the unwanted frequency component to be suppressed, and w, adjusts the frequency of
the main lobe. By carefully choosing both 6 and w, we are able to synthesize a pulse without the
unwanted frequency component while maintaining zero overall detuning. This is done by numerical
optimization using, for example, the L-BFGS-B algorithm from SciPy [73—75]. Fig. (5.8) shows
the example of a pulse engineered to suppress the leakage into the second excited state.

Experimentally, longer pulses are often used because of the limitation of the output amplitude
from the arbitrary wave generator (AWG). Longer pulses can be synthesized by convoluting multiple
pieces together. The convolution of two functions g, (n) and g,(n) is define as

(91 % g2)(n Z g1(m)gy(n —m). (5.18)

The important property of convolution lies in the convolution theorem [76]:

(91 * 92) (W) = g1 (w)ga(w), (5.19)

which implies the zeros in the spectrum of (g, * g,) is the combination of zeros of ¢g; and g,. An

example of the pulses we use for the experiment is the convolution of three pieces

f(n) = A(wy * wy * sq)(n), (5.20)

where A is a scaling factor and w, represents a piece of pulse waveform given by Eq. (5.16) for
suppressing a specific frequency component, sq represents a square waveform of certain length.
This combined pulse is capable of canceling out multiple unwanted frequency components while
having a flat top, making it more efficient than a Gaussian pulse on AWG with limited output
amplitude. The combined pulse can be customized to fit with the purpose of specific experiment
not limited to gate-based approach, for example, by replacing the square wave with time-dependent

ones for the implementation of certain evolution. The number of w-pulses can also be changed.
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Figure 5.9: Combined pulse. (a) The real and imaginary parts of the combined pulse f. The pulse is
an example Eq. (5.20) with w; and w, designed to suppress both the leakage to the second excited
state and qubit crosstalk. (b) The Fourier transform of f. The spectral weight at the transmon
anharmonicity « = —180 MHz is suppressed, as indicated by the red dashed line. In addition,
the spectral weight in resonance with the adjacent qubit which is at —450 MHz is suppressed,
simultaneously, as indicated by the red dotted line.

Fig. (5.9) shows an example of a combined pulse design to suppress both the leakage to the
second excited state and the crosstalk with an adjacent qubit. In the time domain, the pulse features
smooth transitions at both the beginning and the end, with a flat top (Fig. (5.9a)). The steepness of
the transitions are controlled by the total length of w; and w,. The spectrum of the combined pulse
has zeros both at the qubit anharmonicity and the resonance frequency of the adjacent qubit. In
addition to these two specific frequencies, the pulse features the suppression of broadband frequency
components as shown in the rapid decrease in the amplitude spectrum away from the main lobe (Fig.
(5.9b)). As a comparison, the square wave contains a large amount of unwanted spectral weight, as
is shown in the slowly decreasing baseline in the amplitude spectrum (Fig. (5.10b)).

The pulse generated by this approach is able to suppress leakage into unwanted quantum states.
But phase error due to AC Stark shift needs to be compensated in other ways. We could use a pulse

detuning to achieve this [77—79], which needs to be experimentally calibrated.
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Figure 5.10: Square pulse. (a) The square pulse waveform in the time domain. (b) The Fourier
transform of of the square pulse. The frequency component at the transmon anharmonicity o« = —180
MHz is large, as indicated by the red dashed line. Same large amplitude is displayed near the
resonance frequency of the adjacent qubit at —450 MHz (red dotted line).
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Figure 5.11: Feedback control for parametric resonance. The horizontal axis shows the index
of the experiments, each separated by a few milliseconds. Real experiments is performed in a
interleaved approach.
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Appendix A:

A.1 Energy-momentum Tensor of Superconductor

Appendix: for future reference, the stress-energy tensor of a superconductor is given by

0T = —8(j"py) — 05.<,

6T = H = pén + j - ip,
1 .
6(g),

e (A1)
6T = —cé(np),

5Ta

0T} = —nép —pa0j, + Jpopy, (Not summing over a)
0Ty = —0(jupp), (a# D).
The trace

0TS = pon —p - 63 —3(ndép + 3 - 6p) (A.2)

A.2  Properties of the Entangled States

To emphasize the special meaning of the singlet states, we also introduce a circle symbol in addition
to the labeled cup.

A generalized singlet state for N-level qudits is defined as a N-body entangled state

|Ay) = Emymy..my [mymy ...my) (A.3)

where m; takes value from 0 to (N — 1) and € 18 the Levi-Civita symbol.

myMmy...M
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W) = [Ay)

=Flon—noy=\__J

[Ag) = L (|012) — [021) + [120) — 102) + |201) — [210)) = w

URIQI)|A;) =

]|
|

LJ

={IeUh[w)

=(I®UIeUT)|A;)

Figure A.2: Cup and cap. (a) Cup and (b) cap.

A.3 Bell States

The definition of the Bell states are
|[®7) =
7)) =
) =

) =

(\00> +[11))

%I

(|00> — 1))

SI

(|01> +10))

SI

(\01> —[10))

%I
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A.4 Relation between the Bell States

The Bell states are related by single-qubit 7-rotations
P =XQI|UH) =TQ X|¥T)

04) = —Y @ I|U-) =il @ Y|U~)

(A.5)
)= —XQIU ) =T X|¥)
N = ZQIV ) =—-IQZ|¥)
<cI>+yU®YUTY|<I>+>
(O~ |U @ XUTX|®™)
(A.6)

(UHU @ ZUT Z| )

(U U UTw)
A.5 Arbitrary Single-qubit Rotation

There are two conventions for representing an arbitrary single-qubit rotation

1. The R; («) representation, where rotation axis 7 and the rotation angle «. This representation
is both geometrically intuitive with a clear physical meaning but less straightforward to
implement. The matrix representation appears to be complicated.

2. The U(#, ¢, \) representation, where the three parameters are the Euler angle. This rep-
resentation is slightly less geometrically intuitive but is easier algebraically featuring the

decomposition into sequential rotations of simpler types.

We will discuss these two representations in the following subsections.

A.5.1 The R, (a) Representation

The first one is based on the rotation axis o and the rotation angle . 1 is a 3-dimensional unit

vector specified by the polar angle 6 and the azimuthal angle ¢ in the usual spherical coordinates
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Figure A.3: Ball of single qubit gates. Every single qubit gate can be represented in this ball (up to
a global phase). The structure of this ball is essentially equivalent to the 2QMES ball due to the
Choi—Jamiotkowski isomorphism [80].

The rotation axis 7 is given by
n(0,¢) =sinfcosp & + sinfsinpy + cosh 2 (A.7)

Based on the parameterization, we alternatively use the notation R(«, 6, ¢). The rotation along the

n axis with angle « is

R, (a) = e 1aon/2 ZICOS%— ia-ﬁsin% (A.8)
The matrix representation
cos% — i sin%cos& —ie‘“%in%sin@

. . O « ..«
—1e‘¢sm§sm0 cos§+1sm§cos«9

All single-qubit gates can be regarded as special cases of R, («). Here is an incomplete list of

them
a ..«
COS — —1 SIDE
Ry(a)=| = 2, G2 (A.10)
—ISIH§ COS§
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(0% e
COSE —SIHE
Rya)=| 2 2, (A.11)
S — COS —
2 2
e—ia/2 0
R, (o) = ‘ , (A.12)
0 ela/2

Defined in this way, R, (a) contains a nontrivial geometric phase proportional to . In order to see

this, we write

R;(2m) = —I = e i7], (A.13)

where an extra phase of — is accumulated every 27 rotation. To compensate for the global phase,
the Pauli gates (effectively 7 rotations) are defined with an extra phase factor of i = exp(in/2)

relative to R, (o)

0 1
X =iRg,(m) = , (A.14)
10
0 —i
Y = iR@(W) = , (A.15)
i 0
1 0
Z =1iRy(m) = , (A.16)
0 —1
Also, for the Hadamard gate
_ 1 1 1
1 —1
Similarly, the roots of the gates are defined as
. 1 (142 1—1
VX = ei"/"R (g) =3 : (A.18)
1—¢ 1414
A 1 0
S =7 =e"/R, (f) - , (A.19)
2 0 i



T:ﬁze”/gR£<z>: O (A.20)

4 0 eiTr/4
And generally, the phase gate
: 1 0
P(a) =e'*?2R; (a) = : (A.21)
0 eia

Finally, we define a special case of the R, («) when 7 lies in the Z-y-plane

« L g
COS§ —ie s1n§
R(¢p, ) = By (z 4) (a) = , « a (A.22)
—ie‘¢sin§ cosE

0 e ¢
el 0
and 7 /2 rotations
T 1 1 —ieiid)
R (¢, —) S (A.24)
2/ V2| _jeie 1

A.5.2 Virtual z-rotations

Before moving on with more complicated manipulation of quantum gates, this subsection is devoted
for understanding virtual and physical frame rotations.

The qubit Hamiltonian in the lab frame is represented as
Hlb = ! hw, o (A.25)
0 2 T '

The qubit is constantly rotating along the —2-axis. It would be helpful to distinguish the operators
and states by labeling them in different frames. The ground state and excited state are used to

encode a qubit
lab lab

1 0
|O>1ab _ |g>1ab — 7 |1>lab — |6>lab — . (A26)

0 1
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We define the Pauli operators in the rotating frame to be o¥°%(¢), with

7

O'rOt(t) — Ulab(t) -0

z z

(A.27)

2

We supress the label for o, in any frames for simplicity. They satisfy the same commutation relation
(05, 03] = 21 € ,,07°". In order to find the other two, we write down the Heisenberg equations

of motion for the operators in the rotating frame,

i
ata.rot — _[H(l)ab’ O,rot] = W o.rot,

x A x q-yY
i (A.28)
0,0 = [ HE®, o3| = —w, i,

At t = 0, the operators are the same in both frames

71(0) = 012 (0),

x

(A.29)
02" (0) = 0}2*(0),
From these equations we obtain the solution
ot = 0P cosw,t — ot sinw,t,
(A.30)
o3t = ob sinw,t + ot cosw,t.
In general, we could use the evolution operator
Ulab(t) — efiHlabt/ﬁ — eiwthZ/Q, (A31)
to find out the relation between the quantum state represented in the two frames
()" = U= () [(0))™" = [(0))"*" (A32)

The Hamiltonian in the rotation frame is H{°* = 0. In other words, the qubit state keeps constant in
the rotating frame, which make it the prototype of a reasonable computational space.
Now, let us consider adding an external microwave drive. Under rotating wave approximation

Hlab — H(l)ab + H(liab
1 1

= —Ehwqaz — §hQR (olabemiwqt 4 glabgiwgt) (A.33)
1 1 .
= —§hwqaz — §hQR (a}jb cosw,t — O'?Ifb sin wqt) ,
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where the raising and lowering operators are defined as !

lab _ |1>1ab<0| % ( lab _ O.;ab
1
o.lij — |0>lab<1’ 5 ( lab + lo.Lab

In the rotating frame, the Hamiltonian has the simple form

1
Hrot — _§hQRU§cOt ,

We define the computational frame F'with an extra frame rotation ¢,

ol = glab cos(wqt + ¢p) — O'Lab Sin(wqt +op),

05 = glab Sin(wqt + QSF) + a?bab cos(wqt + qu)

Now, consider adding a frame rotation

¢F’ = ¢F+ «,
We have the relation
F _ _F F:
oy =0, cC0sa— 0y, sina,
/
05 = fsma+0 COSs Qv

/7

AF — e—iaoz/2AFeiaUz/2

The corresponding relation for quantum states

)" = emioo 2 |y = R (a) )"

(A.34)

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)

In other words, by doing the frame rotation, we are applying a virtual R, gate. Practically, the

computational frame is dynamically defined according to the value of ¢, whose value is updated

every time virtual R, gate is applied on the system. This type of virtual R, gate is the standard

implementation for cQED-based quantum information processing due to the advantage that it does

not introduce any extra noise. In terms of instrumentation, this approach only requires changing the

phase of the intermediate frequency signal.

IThe sign in the definitions complies with our definition of the ground and exited states.

98



Throughout this thesis, we always work in the computational frame F'without explicit labeling

F F

0) = , 1) = ; (A.40)

where F'may reduce to the plain rotating frame in the special case if the z-rotations being used are

all physical, which will be discussed in the next subsection.

A.5.3 Physical z-rotations

Arbitrary physical z-rotations can be implemented by cascading two 7 rotations (up to a global

phase of ),
a 0 efi(¢+o¢/2) 0 efuZ)
R(¢+5.7) Rem) =—|
el(¢+a/2) 0 e1¢ 0
e—ia/2 (A.41)
B 0 eia/2

where ¢ could be arbitrarily chosen but usually ¢ = 0 for convenience. The advantage of physical
z-rotations is they are natively compatible with parametric operations without any additional

adjustments.

A.5.4 The U(Y, ¢, \) Representation

This matrix can be decomposed into three parts. Due the advantage in engineering implementation, it
isusually defined as a standard type of gate, e.g. as part of the OPENQASM3 [81]. To experimentally

implement arbitrary rotation, we represent the rotation with Euler angles.

cos — —eltrgin —

el?sin— e!(®tN cog —
2 2
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The above expression can be decomposed into the combination of Y-rotation sandwiched by

two phase gates,

0V v
1 0 CoS 5 Sin 5 1 0
0 e'? sin - cos— 0 e (A.43)
2 2
= P(p)R,(9)P(N).

In terms of experimental realization, the above expression can be transformed into various forms.

On a platform with well-calibrated 7 /2 pulses, it is generally desirable to convert Ry(ﬁ) into

1(1—i 144\ (e 92 0 14+4i 1—i
R, (V) =~ '
144 1—34 0 e92)\1—i 1434 (A.44)
— VX R,(0VX,

which can be easily implemented. Up to a global phase,
U9, 0,\) = R.(0)VX R(OWXR,(N). (A45)

Though the solution is not unique, the conversion table we choose is

¥ = 2arcsin (sin % sin 0)

@ = arctan <tan % cos 9) + ¢ — g (A.46)
A = arctan (tan % cos 0) — o+ g,

which are defined for —m < o < mand 0 < 6 < 7. For the boundary case where o = +7, we

define
V=7—|m— 20|
gpzsgn(w—QG)g—l—qb—g (A.47)
T T
A= —20)—- — —
sen(r —20)5 9+ 2.
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A.5.5 Hermitian Conjugate of U

v ixo U

cos — —e'*sin —

U, o, =1 24 2 (A.48)
el?sin— e!(®tN cog —
2 2

9 L

COS — e 'Ysin —

—e 1 rgin— e iletN) cos 5
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