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Circuit quantum electrodynamics provides a unique platform for investigating fundamental physics

and practical quantum applications. In this thesis, I introduce the superconducting circuit platform

from a foundational perspective. Drawing inspiration from quantum electrodynamics and utilizing

the analog of closed time-like curves, this work achieves quantum enhancement over classical

strategies. Specifically, I investigate the agnostic phase estimation protocol and the associated

approaches that leverage quantum entanglement to optimally estimate an unknown rotation angle

without requiring prior knowledge of the rotation axis. This work not only demonstrates a proof of

concept for a type of entanglement-assisted metrology but also highlights intriguing quantum effects.

To establish the theoretical framework, I include a pedagogical introduction to quantum and classical

Fisher information - the key concepts we utilize for quantifying sensor performance. Finally, I detail

the experimental techniques that enable the demonstration of metrological advantage, weighing the

benefits of quantum enhancement against the costs of entanglement manipulation.
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Chapter 1: Quantization of Superconductors

1.1 Introduction

The electromagnetic field and electrical current represent the very first instance of a gauge field

and corresponding conserved flow of charge that humans have learned to engineer at the quantum

level. The practice of harnessing this specie of gauge interaction with superconducting circuits is

termed circuit quantum electrodynamics (cQED). In terms of elementary interactions, cQED can be

considered even more fundamental than atoms, while also richer than individual spins or photons,

when compared with these equally popular quantum information platforms. The distinctive interplay

between gauge field and matter deserves greater appreciation. Inspecting these two objects, the

electromagnetic field itself is already quite pristine to work with. On the other hand, to access the

intrinsic properties of electric current flowing in superconductors, strategic simplification is the

approach we take.

Higgs Boson

Photon Weak Gluons

Quarks
Leptons

Bosons

e  μ  τ ν  ν  νe     μ     τ q

gW Zγ

H

Figure 1.1: Elementary particle interactions. The electromagnetic interaction is mediated by

photons 𝛾. The form of electrical current most accessible to humans is carried by the ensemble of

electrons 𝑒. Other types of interaction are mediated by known bosons, while the particle (quantum)

nature of gravity remains elusive [1].
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The purpose of this chapter is to present a tailored model of superconductors suited for cQED

applications. Although various models of superconductivity exist, they are not always the most

convenient for our specific needs. Below is an incomplete list of well-known approaches [2–9],

loosely organized by category:

1. Macroscopic models: Ginzburg-Landau theory, or more generally, nonlinear Schrödinger

equations. Stemming from thermodynamic considerations, these phenomenological models

provide unique insights into superconductivity, especially near phase transitions.

2. Microscopic models: BCS theory, Bogoliubov-de-Gennes (BdG) formalism, and Gor’kov

equations: derived from the many-body electronic Hamiltonian, these models provide a

refined description incorporating quasiparticles.

Despite the capability of these models, our goal is to develop a minimal model that captures

only the most essential degrees of freedom—namely, the superconducting phase and charge den-

sity—along with a small set of related variables. In fact, the conjugacy of phase and charge with

a genuine quantum treatment of their interaction with the electromagnetic field comprises nearly

all the phenomena we seek to analyze. This motivates us to search for a specialized framework.

Drawing selectively from various established approaches, we assemble a minimal yet consistent

model that provides a clear starting point for investigating superconducting circuits.

1.2 Lagrangian and Hamiltonian Formalisms of a

Superconductor

From a phenomenological perspective, a superconductor can be regarded as a perfect fluid with

negligible viscosity and thermal conductivity. Under these assumptions, there is effectively no

entropy production or heat transfer within the relevant time scales, so the fluid’s evolution is isen-

tropic (adiabatic and reversible). This reversibility justifies adopting Lagrangian and Hamiltonian

formalisms, eventually guiding us toward a quantized description of superconductivity. The thermal-

2



ization of the superconductor is also assumed to be homogeneous and far below the superconducting

critical temperature, where the quasiparticle population can be neglected. As a starting point for the

approximation, the fluid is dominated by a single superconducting component.

In this picture, the superconductor could be considered as a coherent ensemble of identical

particles (Cooper pairs) in the condensate, each carrying energy and momentum, thus satisfying

certain universal parameterization and conservation laws. We consider a general form of the

Lagrangian density expressed via its variation

𝛿ℒ = 𝑛𝛿𝜇 − 𝒋 ⋅ 𝛿𝒑, (1.1)

where 𝜇 is the chemical potential of a Cooper pair, and 𝒑 is its momentum. By treating ℒ as a

function of 𝜇 and 𝒑, we define the derivatives

𝑛 = 𝑛(𝜇, 𝒑) = 𝜕ℒ
𝜕𝜇

,

𝒋 = 𝒋(𝜇, 𝒑) = −𝜕ℒ
𝜕𝒑

,
(1.2)

to be the number density and the corresponding conserved current density of the Cooper pairs,

respectively.

Before proceeding, let us briefly examine the dimensional consistency of these quantities. The

Lagrangian density 𝛿ℒ has the same dimension as an energy density, i.e., energy per unit volume.

This is consistent with the term 𝑛𝛿𝜇, where 𝑛 represents particles per volume and 𝜇 is essentially

the form of energy when a particle is at rest. So, their product has the dimension of energy per

volume as well.

Meanwhile, a particle’s kinetic energy has units of momentum multiplied by velocity. Hence, a

particle flow (number flux) 𝒋 carries units of velocity per spatial volume, and multiplying that by

momentum 𝛿𝒑 again yields an energy per volume. Taken together, these considerations confirm

that each term contributing to the Lagrangian density is properly interpreted as an energy density.

We specify the Lagrangian density through the variation 𝛿 because only the differential of

the Lagrangian density is physically meaningful. Adding an arbitrary constant to the Lagrangian

generally does not contribute to any measurable effect.

3



For consistency, we require the mixed partial derivatives of ℒ to commute, which yields the

following conditions:
𝜕𝑛
𝜕𝒑

− 𝜕𝒋
𝜕𝜇

= 0,

𝜕
𝜕𝒑

× 𝒋 = 0.
(1.3)

These conditions guarantee the 𝛿ℒ to be an exact differential.

Since all the variables are assumed to be dependent on the spacetime coordinates, we also

introduce the covariant notation 𝑥𝛽 = (𝑐𝑡, 𝒙) = (𝑐𝑡, 𝑥, 𝑦, 𝑧) 1, where the index 𝛽 chooses a value

from {0, 1, 2, 3}, 𝑐 is the speed of light in vacuum. The differential operators are denoted as

𝜕𝛽 = (𝜕𝑡/𝑐, ∇) = (𝜕𝑡/𝑐, 𝜕𝑥, 𝜕𝑦, 𝜕𝑧). Using this representation, we can optionally represent Eq.

(1.1) in a covariant format

𝛿ℒ = −𝑗𝛽𝛿𝑝𝛽 = −𝑔𝛽𝛾𝑗𝛽𝛿𝑝𝛾 (1.4)

, where 𝑗𝛽 = (𝑐𝑛, 𝒋) is the four-current density and 𝑝𝛽 = (𝜇/𝑐, 𝒑) is the four-momentum. In the

following part of the chapter, repeated indices are always implicitly summed over, unless otherwise

stated. We use the Minkowski metric with matrix representation

𝑔𝛽𝛾 = 𝑔𝛽𝛾 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (1.5)

The meaning of the metric is for measuring infinitesimal spacetime distance (Fig. (1.2))

d𝑠2 = 𝑔𝛽𝛾d𝑥𝛽d𝑥𝛾

= 𝑔00 (d𝑥0)2 + 𝑔11 (d𝑥1)2 + 𝑔22 (d𝑥2)2 + 𝑔33 (d𝑥3)2

= −𝑐2d𝑡2 + d𝑥2 + d𝑦2 + d𝑧2.

(1.6)

We will encounter more examples of measuring infinitesimal distances in the later chapters.

1Throughout this chapter, for clarity, we use Greek (Latin) alphabet as indices to label the components of 4-

dimensional (3-dimensional) quantities.
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d𝑥2 + d𝑦2 + d𝑧2

𝑐 d𝑡2d𝑠2

Figure 1.2: Minkowski metric. The minus sign in the time-like component of the metric is

significant. In the triangle, the hypotenuse d𝑠 is shorter than the bottom leg √d𝑥2 + d𝑦2 + d𝑧2 due

to the contribution from propagation in time 𝑐 d𝑡. The phenomenon is known as length contraction

in relativity. The value of d𝑠2 is positive (negative) for a space-like (time-like) interval.

The variables with lowered indices are 𝑗𝛽 = (−𝑐𝑛, 𝒋) and 𝑝𝛽 = (−𝜇/𝑐, 𝒑). We will occasion-

ally adopt the covariant notations, which help us utilize the formal symmetry between temporal and

spatial coordinates.

In addition to the fluid picture, a superconductor is simultaneously characterized as a wave.

We further assume the superconductor admits an order parameter 𝜃 = 𝜃(𝑡, 𝒙) taking values from

[−𝜋, 𝜋] with the endpoints identified (Fig. (1.3)). The order parameter plays the role of a phase

propagating in spacetime, complying with the four-momentum

ℏ𝜕𝛽𝜃 = ℏ(−𝜔/𝑐, 𝒌) = 𝑝𝛽,

−ℏ𝜕𝑡𝜃 = ℏ𝜔 = 𝜇,

ℏ∇𝜃 = ℏ𝒌 = 𝒑,

(1.7)

where ℏ is the reduced Planck constant. We write down the Lagrangian density and action using 𝜃

as the field variable

𝛿ℒ(𝜃) = −ℏ𝑗𝛽𝜕𝛽𝛿𝜃,

𝛿𝑆[𝜃] = ∫ d4𝑥 𝛿ℒ = −ℏ ∫ d4𝑥 (𝑛𝜕𝑡𝛿𝜃 + 𝒋 ⋅ ∇𝛿𝜃),
(1.8)

where the square bracket in 𝑆[𝜃] is a convention for emphasizing the action is a functional which

maps a function 𝜃(𝑥) to a number.

The wave picture and the fluid picture unify when we calculate the equation of motion by

5



−𝜋 𝜋

[−𝜋, 𝜋]

−𝜋 and 𝜋

𝑆1

[−𝜋, 𝜋]/{−𝜋, 𝜋} = 𝑆1

Figure 1.3: Identifying endpoints of a line segment. The topology of the line segment is changed.

Identifying points is a topological operation of gluing together points. Also known as the quotient

topology. We will encounter more examples of identifying points in a manifold in the later chapters.

We emphasize that the topology of the space in which the order parameter is defined is important in

two ways: (1) it defines the correct quantum mechanical boundary conditions for the allowed states.

In particular, such a periodic boundary condition prescribes a discretized conjugate momentum. In

other words, the integer nature of charge. (2) It emphasizes the importance of gauge symmetry in

quantum mechanics since each point on the circle is placed on an equal footing.

evaluating the action principle

0 = 𝛿𝑆[𝜃]

= ℏ ∫ d4𝑥 (𝜕𝑡𝑛 + ∇ ⋅ 𝒋)𝛿𝜃 − ℏ ∫ 𝑑4𝑥𝜕𝛽(𝑗𝛽𝛿𝜃),
(1.9)

for arbitrary variation 𝛿𝜃, where the second term is a vanishing surface if 𝑗𝛽 = 0 on the integration

boundary. For simplicity, we assume no current entering or escaping the superconductor, and

vanishing initial and final charge distribution. In this case, the equation of motion is simply the

continuity equation expressing the conservation of the number of Cooper pairs

𝜕𝑡𝑛 + ∇ ⋅ 𝒋 = 0, (1.10)

which turns out to be also a wave equation for 𝜃 in the later section.

The unification of the two pictures becomes more explicit when we consider the kinetics of a

Cooper pair

𝜕𝑡𝒑 + ∇𝜇 = 0, (1.11)

which can be understood as the gradient of chemical potential induces acceleration of the Cooper

pair following Newton’s second law, being derived by commuting 𝜕𝑡 and ∇ acting on the phase 𝜃.
6



We also conclude that the momentum field is irrotational

∇ × 𝒑 = 0. (1.12)

We calculate the canonical momentum of 𝜃

𝜕ℒ
𝜕(𝜕𝑡𝜃)

= −ℏ𝑛, (1.13)

which leads to the With the Hamiltonian density given by the Legendre transform

𝛿ℋ(𝜃) = −ℏ𝛿(𝑛𝜕𝑡𝜃) − 𝛿ℒ(𝜃)

= 𝛿(𝑛𝜇) − 𝛿ℒ(𝜃)

= 𝜇𝛿𝑛 + 𝒋 ⋅ 𝛿𝒑

= 𝜇𝛿𝑛 − ℏ(∇ ⋅ 𝒋)𝛿𝜃

(1.14)

The Hamilton equations of motion are

𝜕𝑡𝜃 = −1
ℏ

𝜕ℋ
𝜕𝑛(𝒙)

= −𝜇
ℏ

,

𝜕𝑡𝑛 = 1
ℏ

𝜕ℋ
𝜕𝜃(𝒙)

= −∇ ⋅ 𝒋
(1.15)

We proceed with the canonical quantized description by writing the commutation relation for

the operators

[𝜃(𝒙), 𝑛(𝒙′)] = −𝑖𝛿(3)(𝒙 − 𝒙′), (1.16)

where 𝛿(3)(𝒙) is the Dirac delta function in the spatial dimensions. The above commutation relation

could be applied to the analysis of lumped element circuits, as we will encounter in the later chapters.

1.3 Quantization along a Spacetime Loop

In addition to the canonical quantization scheme, superconductors exhibit another curious quantized

feature, which is the action along a loop in spacetime.

𝑆loop = ∮ d𝑥𝛽 𝑝𝛽 = ℏ ∮ d𝜃 = 𝑚ℎ, (1.17)

7



where 𝑚 is an integer and ℎ = 2𝜋ℏ is the Planck constant, also aknown as the quantum of action.

While the loop can be chosen as an arbitrary closed curve within the superconducting material

in spacetime, the particular meaningful case is when the curve is associated with the physical

movement of a piece of superconducting material subject to the limitation of the speed of light

in the vacuum, which travels along a time-like curve. It could be understood as a single piece of

superconductor breaking apart, experiencing individual evolution, and recombining later. Joining

the trajectory of the pieces together, we obtain a closed time-like curve (CTC) in spacetime [10–16].

𝑡

𝒙

𝜃(𝑡, 𝒙)
2𝜋ℏ𝑚

Figure 1.4: Quantization along a spacetime loop.

Or it could be interpreted as the temporary loss of superconductivity in part of the superconductor,

causing a phase slip. In either case, no matter how complicated the individual evolution of the two

pieces undergoes, the integral is constrained to be an integer.

The meaning of this integer is associated with the number of four-dimensional flux quanta

enclosed in the closed spacetime loop. In the case that the system is in a steady state, such a

phenomenon is recognized as the usual quantization of magnetic flux. We will explore the details

by considering the coupling between the superconductor and an electromagnetic field.

8



The above equation reminds us of the old quantum condition, also known as Bohr–Sommerfeld

rule [17, 18]

∮
𝐻(𝑞,𝑝)=𝐸

= 𝑝𝑖𝑑𝑞𝑖 = 𝑚𝑖ℎ, (Not summing over 𝑖) (1.18)

where the integration contour is defined over one period of the motion of constant energy 𝐸 and

𝑚𝑖 is an integer assigned to each pair of canonical coordinates. Despite the visual similarity, the

Bohr–Sommerfeld rule is valid only via the WKB approximation, while our quantization condition

appears to be exact for a superconductor.

1.4 Lagrangian and Hamiltonian Formalisms of

Electromagnetic Field

We work with low fields where the difference between type-I and type-II superconductors is

negligible. Quantization of a gauge field is a non-trivial job, in general. There exist general

approaches like the BRST quantization for the quantization of a general system with gauge symmetry

[19, 20]. For the electromagnetic field, simpler methods exist, and it is useful to demonstrate one

working solution explicitly. Throughout this section, we adopt the temporal gauge

𝜑 = 0,

𝐴𝛽 = (0, 𝑨),

𝑬 = −𝜕𝑡𝑨,

𝑩 = ∇ × 𝑨

(1.19)

Under the temporal gauge, the last two equations can be regarded as the definition of 𝑬 and 𝑩, with

which the following two equations are immediately satisfied

∇ ⋅ 𝑩 = 0 (Gauss′s law for magnetism) (1.20)

∇ × 𝑬 = −𝜕𝑡𝑩 (Faraday′s law of induction) (1.21)

9



The Lagrangian density

𝛿ℒ(𝑨) = 𝑫 ⋅ 𝛿𝑬 − 𝑯 ⋅ 𝛿𝑩 + 𝑱 ⋅ 𝛿𝑨

= −𝑫 ⋅ 𝜕𝑡𝛿𝑨 − 𝑯 ⋅ ∇ × 𝛿𝑨 + 𝑱 ⋅ 𝛿𝑨,
(1.22)

where 𝑱 is the current density of the free charge, here treated as a fixed function. Evaluating the

action principle

0 = 𝛿𝑆[𝑨]

= ∫ 𝑑4𝑥(𝜕𝑡𝑫 − ∇ × 𝑯 + 𝑱) ⋅ 𝛿𝑨 − ∫ 𝑑4𝑥𝜕𝑡(𝑫 ⋅ 𝛿𝑨) + ∫ 𝑑4𝑥∇ ⋅ (𝑯 × 𝛿𝑨),
(1.23)

where the last two terms vanish by assuming both 𝑫 and 𝑯 vanish on the corresponding boundary.

The resulting equation of motion is

∇ × 𝑯 = 𝑱 + 𝜕𝑡𝑫. (Amp ̀ere–Maxwell law) (1.24)

The divergence of the above equation produces

∇ ⋅ 𝜕𝑡𝑫 = 𝜕𝑡𝜌, (Time derivative of Gauss′s law) (1.25)

where 𝜌 is the charge density satisfying

𝜕𝑡𝜌 + ∇ ⋅ 𝑱 = 0. (1.26)

We additionally impose an initial condition

∇ ⋅ 𝑫 = 𝜕𝑡𝜌, 𝑡 = 0 (1.27)

Combining Eq. (1.20), (1.21), (1.24), (1.20) and (1.26), we recover the Maxwell’s equations. We

proceed with the Hamiltonian formalism by calculating the canonical momentum corresponding to

𝑨,

𝜕ℒ
𝜕(𝜕𝑡𝑨)

= −𝑫, (1.28)

satisfying the canonical commutation relation

[𝐴𝑎(𝒙), 𝐷𝑏(𝒙′)] = −𝑖ℏ𝛿(3)𝛿𝑎𝑏(𝒙 − 𝒙′). (1.29)

The Hamiltonian is

𝛿ℋ(𝑨) = 𝑬 ⋅ 𝛿𝑫 + 𝑯 ⋅ 𝛿𝑩 − 𝑱 ⋅ 𝛿𝑨 (1.30)
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1.5 Superconductor Coupled to Electromagnetic Field

We couple the superconductor with the electromagnetic field through minimal coupling. By

performing the replacement

∇𝜃 → ∇𝜃 + 2𝑒
ℏ

𝑨, (1.31)

We distinguish the canonical momentum

𝒑 = ℏ∇𝜃, (1.32)

which is gauge-dependent and the kinetic momenta

𝑷 = ℏ∇𝜃 + 2𝑒𝑨 (1.33)

where the coupling strength is set by the charge of the Cooper pair, −2𝑒. The total Lagrangian

density

𝛿ℒ(𝜃, 𝑨) = −ℏ(𝑛𝜕𝑡𝛿𝜃 + 𝒋 ⋅ ∇𝛿𝜃) − 𝑫 ⋅ 𝜕𝑡𝛿𝑨 − 𝑯 ⋅ ∇ × 𝛿𝑨 − 2𝑒𝒋 ⋅ 𝛿𝑨 (1.34)

Using the action principle, we obtain the equations of motion under similar procedures and assump-

tions

𝜕𝑡𝑛 + ∇ ⋅ 𝒋 = 0,

𝜕𝑡𝑫 − ∇ × 𝑯 − 2𝑒𝒋 = 0.
(1.35)

The kinetic equation shows that the electric field accelerates the Cooper pair in addition to the

chemical potential gradient.

𝜕𝑡𝑷 = −2𝑒𝑬 − ∇𝜇 (1.36)

and

∇ × 𝑷 = 2𝑒𝑩 (1.37)

The total Hamiltonian density is

𝛿ℋ(𝜃, 𝑨) = 𝜇𝛿𝑛 + 𝒋 ⋅ 𝛿𝑷 + 𝑬 ⋅ 𝛿𝑫 + 𝑯 ⋅ 𝛿𝑩. (1.38)
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1.6 Sigma Model for Superconductors

We consider a special case of the above framework, the 𝑂(2) sigma model or, equivalently, the

quantum rotor model in the continuum limit [2, 3]. As a phenomenological model, it correctly treats

the linear part of kinetic inductance without the complexity involving critical temperature and critical

field, making it a suitable description in the dilution refrigeration temperature with appropriate

magnetic shielding. We introduce the model by evaluating the charge density. Considering a metal

near the equilibrium satisfying

𝛿𝑛𝑒 = 𝜈𝛿𝜇𝑒, 𝛿𝒋𝑒 = 𝜌0𝛿𝒗𝑒 = 𝜌0
𝑚

𝛿𝒑𝑒, (1.39)

where 𝜈 represents the electronic density of states near the Fermi surface, 𝑛𝑒 and 𝜇𝑒 represent the

density and chemical potential of the electrons, respectively. 𝒋𝑒 represents the flow of electrons, 𝜌0

represents the density of electrons near equilibrium, 𝑚 represents the effective mass of the electron,

𝒗𝑒 and 𝒑𝑒 represent the velocity and momentum of the electron making drift motion, respectively.

Since variables for the electrons are related to those of the Cooper pairs we have

𝑛 = 1
2

𝑛𝑒, 𝜇 = 2(𝜇𝑒 − Δ), 𝒋 = 1
2

𝒋𝑒, 𝒑 = 2𝒑𝑒 (1.40)

, where Δ is the superconducting gap energy that we have assumed to be a constant, for simplicity.

Using these variables, we obtain

𝛿𝑛 = 1
4

𝜈𝛿𝜇, 𝛿𝒋 = 𝜌0
4𝑚

𝛿𝒑. (1.41)

The major approximation we apply in the sigma model is the linearization of the above equations

by approximating 𝜈, 𝜌0, 𝑚 to be constants near the equilibrium. The implication of the linearization

will be discussed later. Under the approximation, we could integrate Eq. (1.41) to arrive at the

relations

𝑛 = 1
4

𝜈𝜇, 𝒋 = 𝜌0
4𝑚

𝒑, (1.42)

where in the first equation we have set the equilibrium (𝜇 = 0) to be charge-neutral (𝑛 = 0).
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This allows us to evaluate the first term in the Lagrangian density

𝛿ℒ = 𝑛𝛿𝜇 − 𝒋 ⋅ 𝛿𝒑 = 1
4

(𝜈𝜇𝛿𝜇 − 𝜌0
𝑚

𝒋 ⋅ 𝛿𝒑) = 1
4

𝛿 (𝜈
2

𝜇2 − 𝜌0
2𝑚

𝒑2) , (1.43)

By using Eq. (1.7), the Lagrangian density and action of the system without electromagnetic field

ℒ(𝜃) = ℏ2

4
[𝜈

2
(𝜕𝑡𝜃)2 − 𝜌0

2𝑚
(∇𝜃)2] , (1.44)

𝑆[𝜃] = ∫ 𝑑𝑡𝑑𝑟3ℒ(𝜃) = ℏ2

4
∫ 𝑑𝑡𝑑𝑟3 [𝜈

2
(𝜕𝑡𝜃)2 − 𝜌0

2𝑚
(∇𝜃)2] , (1.45)

Performing variation with respect to 𝜃, we obtain

𝛿𝑆[𝜃] = ℏ2

4
∫ 𝑑𝑡𝑑𝑟3𝛿𝜃 (−𝜈𝜕2

𝑡 + 𝜌0
𝑚

∇2) 𝜃, (1.46)

By enforcing the action principle 𝛿𝑆[𝜃]/𝛿𝜃 = 0, the equation of motion we obtain is a wave equation

defining the Goldstone mode of the superconductor [21–26]

(−𝜈𝜕2
𝑡 + 𝜌0

𝑚
∇2) 𝜃 = 0, (1.47)

By replacing −𝜕𝑡 → 𝜔, ∇ → 𝒌, we obtain the linear dispersion relation

𝜔 = ±𝑣|𝒌|, (1.48)

where the velocity 𝑣 of the propagation is the Fermi velocity given by

𝑣 = ∣𝜕𝜔
𝜕𝒌

∣ = √ 𝜌0
𝑚𝜈

. (1.49)

While the Goldstone mode is massless, featuring a linear dispersion relation, in reality, the mode

does not individually exist because of the strong coupling with the electromagnetic field. In order

to see the effect, we write down the coupled Lagrangian density. The free electromagnetic field in a

dielectric is described by

ℒ(𝜑, 𝑨) = 𝜖
2

𝑬2 − 1
2𝜇

𝑩2

= 𝜖
2

(∇𝜑 + 𝜕𝑡𝑨)2 − 1
2𝜇

(∇ × 𝑨)2,
(1.50)
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where 𝜑 is the electric potential, and 𝑨 is the magnetic vector potential. We have utilized the

relations

𝑬 = −∇𝜑 − 𝜕𝑡𝑨,

𝑩 = ∇ × 𝑨
(1.51)

When coupled to the electric charge

ℒ(𝜌, 𝑱, 𝜑, 𝑨) = −𝜌𝜑 + 𝑱 ⋅ 𝑨 + ℒ(𝜑, 𝑨), (1.52)

To couple the superconductor to an electromagnetic field, we do the replacement

𝜕𝑡𝜃 → 𝜕𝑡𝜃 − 2𝑒
ℏ

𝜑,

∇𝜃 → ∇𝜃 + 2𝑒
ℏ

𝑨,
(1.53)

where the coupling strength is set by the charge of a Cooper pair, −2𝑒. The total Lagrangian

ℒ(𝜃, 𝜑, 𝑨) = ℏ2

4
[𝜈

2
(𝜕𝑡𝜃 − 2𝑒

ℏ
𝜑)

2
− 𝜌0

2𝑚
(∇𝜃 + 2𝑒

ℏ
𝑨)

2
] + ℒ(𝜑, 𝑨) (1.54)

Comparing these two gives us the electric charge density and current of the superconductor

𝜌 = ℏ𝑒𝜈
2

(𝜕𝑡𝜃 − 2𝑒
ℏ

𝜑)

𝑱 = −ℏ𝑒𝜌0
2𝑚

(∇𝜃 + 2𝑒
ℏ

𝑨)
(1.55)

By forcing 𝛿𝑆[𝜃]/𝛿𝜃 = 0, we obtain the equation of motion for 𝜃, which is alternatively expressed

as the continuity equation

𝜕𝑡𝜌 + ∇ ⋅ 𝑱 = 0 (1.56)

By calculating the gradient and curl of the two equations, we recover the London equations for

superconductors [27]

𝑬 = 𝜕𝑡(Λ𝑱) + 1
𝑒2𝜈

∇𝜌 ≈ 𝜕𝑡(Λ𝑱),

∇ × (Λ𝑱) = −𝑩,
(1.57)

where the phenomenological parameter Λ is given by

Λ = 𝑚
𝑒2𝜌0

= 𝑚∗

𝑛∗(𝑞∗)2 . (1.58)
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The approximation used in the first equation requires that the spatial gradient of the charge distribu-

tion is small and the density of states is large, which is usually true for metals. From the London

equations, we obtain the Meisner effect. The electromagnetic field follows exponential decay inside

a superconductor with characteristic length 𝜆𝐿. Inside a superconductor, we may assume both 𝜌

and 𝑱 vanish. From the equation, we see that the electric potential integrated over time, which has

the same dimension as a magnetic flux, is also quantized. The change of this value can be a result

of a temporary loss of superconductivity or a phase slip through a Josephson junction. After the

superconductivity is recovered, the jump only takes an integer value.

1.6.1 Electron-hole Symmetry

In the sigma model, we linearize the relation between charge and phase (Eq. (1.42)). As a result,

the system respects charge conjugation symmetry

𝜃 → −𝜃, ℒ → ℒ (1.59)

The Lagrangian of the system is invariant under charge conjugation. It is a reasonably good

symmetry approximation for superconducting metals with a large density of states. The Hamiltonian

exhibits the same electron-hole symmetry inherent from the Lagrangian

𝜃 → −𝜃, 𝑛 → −𝑛, ℋ → ℋ (1.60)

In chapter four, we utilize this symmetry to construct the electron-hole symmetry of a superconduct-

ing transmon qubit. The electron-hole symmetry is employed to define a sensing protocol called the

positronium sensing.

1.7 Summary

Our agnostic phase estimation protocol, discussed in later chapters, could be described as a general-

ization of this quantization phenomenon to include more complicated parameter space in addition

to a single phase 𝜃, which encodes the information of a qubit.
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The interplay of phase and gauge is important because it gives us the hint that quantummechanics

does not live in a flat space, everything is intrinsically curved. Even if we are not directly dealing

with a gauge field, similar effects will be encountered in the next chapter.
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Chapter 2: Agnostic Sensing with Superconducting

Qubits

2.1 Introduction

In this chapter, we discuss the concept of agnostic sensing, a protocol designed to estimate an

unknown rotation angle 𝛼 without requiring prior knowledge of the rotation axis 𝒏̂. To introduce the

idea, we draw inspiration from the anecdote of Richard Feynman and John Wheeler, who explored

the notion that an electron traveling forward in time is effectively indistinguishable from a positron

traveling backward in time.

Building on this time-reversal symmetry perspective, we show how entanglement is related to the

so-called closed time-like curves. Specifically, we harness the power of entangled superconducting

qubits to implement novel sensing protocols that circumvents the need to align the sensor concerning

an unknown rotation axis. We begin by briefly revisiting the historical context and ideas from

quantum electrodynamics (QED). We then show how the concepts can be translated into cQED

setting, leading to metrological advantage.

(a) John Wheeler (b) Richard Feynman

Figure 2.1
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Figure 2.2: One electron universe. Each red (blue) solid line represents an electron (positron)

traveling forward (backward) in time. Wavy lines represent photons. Each joint of solid lines and

wavy lines represents a pair production or pair annihilation event.

2.2 One-Electron Universe and Quantum Electrodynamics

2.2.1 Wheeler’s Phone Call to Feynman

Here is the story according to Feynman [28]:

I received a telephone call one day at the graduate college at Princeton from Pro-

fessor Wheeler, in which he said, “Feynman, I know why all electrons have the same

charge and the same mass” “Why?” “Because, they are all the same electron!”

Although the one-electron universe hypothesis was not polished at that time, the ingredients

were later integrated into Feynman’s approach to QED. One of the key ideas: the kinematics of

particles respects time symmetry.
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2.2.2 Feynman Propagators and Diagrams

A textbook for a comprehensive treatment of quantum field theory is recommended [20, 29]. But the

basic idea is simple. We represent the vacuum state as |0⟩. A Fermion can be added to a quantum

state, for example,

̄𝜓(𝑦) |0⟩ (2.1)

represents the quantum state with one Fermion created at the spacetime coordinate 𝑦, with the first

component 𝑦0 labeling the time of its creation. For simplicity, we have suppressed the spinor indices

associated with the Fermion. A Fermion can also be removed from a quantum state. For example

𝜓(𝑥) ̄𝜓(𝑦) |0⟩ (2.2)

represents the removal of a Fermion at spacetime coordinate 𝑥, following its creation, where

̄𝜓 = 𝜓†𝛾0 is the Dirac adjoint of 𝜓 and 𝛾0 is the time-like Dirac matrix. We may make the

assumption that the Fermion is created before being removed, which translates to 𝑥0 > 𝑦0. The

ordering of the Fermionic operators 𝜓 and ̄𝜓 is important because they do not commute with each

other. The operator to the right is always applied first.

This quantum state can be projected back to the vacuum state to produce a probability amplitude

𝑆𝐹(𝑥 − 𝑦) = ⟨0|𝜓(𝑥) ̄𝜓(𝑦)|0⟩ , (𝑥0 > 𝑦0), (2.3)

which defines the Feynman propagator of a Fermion traveling from 𝑦 to 𝑥. Now, what happens if

we let a particle travel backward in time? In other words, we are attempting to remove a particle

before its creation. Following the previous reasoning, we write down the expression

𝑆𝐹(𝑥 − 𝑦) = − ⟨0| ̄𝜓(𝑦)𝜓(𝑥)|0⟩ , (𝑥0 < 𝑦0), (2.4)

where a minus sign is added due to the Fermionic statistics when the two operators are exchanged.

The meaning of the expression can be intuitively understood as: by attempting to remove a Fermion

from the vacuum, we created an anti-Fermion at 𝑥

𝜓(𝑥) |0⟩ . (2.5)
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(a)

t

(b)

Figure 2.3: Feynman diagrams. (a) Feynman diagram of the Breit-Wheeler pair production without

labeling the direction on the electron/positron propagators. (b) Three different interpretations of

the same pair production process. Unlike conventional Feynman diagrams where the arrows

represent the movement of charge, here, the arrows represent the movement of the particle (electron

or positron), for the purpose of clarity. In this figure three possible interpretations of the same

Feynman diagram appear different.

Based on this interpretation, Eq. (2.4) describes the propagation of an anti-Fermion from 𝑥 to 𝑦.

Combining these two, we arrive at the full definition of the Feynman propagator

𝑆𝐹(𝑥 − 𝑦) = ⟨0|𝑇 𝜓(𝑥) ̄𝜓(𝑦)|0⟩ , (2.6)

where 𝑇 is the time-ordering operator. On the left-hand side, the particle physics represented by the

Feynman propagator is always meaningful regardless of the relation between 𝑥0 and 𝑦0. On the

right-hand side, the picture is more aligned with one’s intuition. No matter whether the excitation is

a Fermion or an Anti-Fermion, it always propagates forward in time. However, the two descriptions

are both correct and equivalent.

Although the construction looks bizarre, built on top of these propagators, QED is a remarkably
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accurate theory, which has been experimentally examined down to the 10−9 level [30, 31].

Feynman’s Nobel Prize-winning work on QED introduced Feynman diagrams to describe

interactions between electrons and photons. Each line in a Feynman diagram represents a Feynman

propagator, which remains valid under changes of reference frame. In particular, an electron

traveling forward in time can be reinterpreted as a positron traveling backward in time. This

interchangeability lays the conceptual foundation for thinking of processes as flexible in their arrow

of time.

2.3 Closed Time-like Curve

One step further, by connecting the worldline of an electron and a positron, we create an object

called closed time-like curve. Similar to the ideas discussed in the first chapter, in the context of

superconductors.

The reason the electron and positron can be regarded as the same electron traveling in the

spacetime is that they are entangled. This quantum entanglement comes from the conservation laws.

The entanglement involves the linear momenta, orbital angular momenta, and spin angular momenta

of the particles. To capture the essence of the process, we focus on the simplest case where all spatial

degrees of freedom are neglected, only considering the entanglement in the spins. Specifically, in

the simple case where two photons are involved, the Landau–Yang theorem guarantees that the

electron and positron have to be generated in zero total angular momentum [32, 33]. Ignoring the

contribution from the orbital part, this implies the generation of a singlet state. An example of such

a singlet generation process is the (linear) Breit-Wheeler process near the energy threshold, with

two incident beams of 𝛾-photons both left or right circularly polarized [34].

While high-energy experiments have so far provided only partial evidence for the Breit–Wheeler

process [35, 36], we simplify this challenge by adopting an alternative approach to explore its

underlying physics. In our experimental work [37], which builds on the protocol of Ref. , we encode

the spins of two entangled particles into superconducting transmon qubits, forming the basis for
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our experimental investigation. Prior optical experiments have examined the relationship between

entanglement manipulation and closed timelike curves [38, 39], and delayed-choice quantum

erasure experiments bear conceptual similarities to our protocol [40, 41]. However, metrological

protocols inspired by closed timelike curves have not yet been demonstrated experimentally. Before

proceeding further, we introduce a diagrammatic representation of entangled states, providing

intuitive clarity for working with such quantum systems.

2.4 Diagrammatic Representation of Quantum Entanglement

The creation of an entangled pair is represented by a cup shape. The measurement in projecting into

the entangled state is represented by a cap shape.

𝑡

|Ψ−⟩

(a)

𝑡
⟨Ψ−|

(b)

Figure 2.4: Cup and cap. (a) A cup represents a pair of qubits in an entangled state. (b) A cap

represents a projective measurement collapsing the quantum state into an entangled state.

2.4.1 A Simple Example

Here is a simple example of connecting a cup with a projective measurement.

By connecting a cup with a projective measurement, we allow the eigenstate of the measurement

basis to propagate backward in time and determine the initial state of the other qubit in the same

entangled pair. The exact initial state of the qubit depends on the measurement outcome and the

type of entangled state.

Later, we will analyze this setup in the case that the entangled state is a singlet state, which will

be important for our protocols.
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𝑡

𝑀

Figure 2.5: Connecting cup with measurement.

2.4.2 Quantum Teleportation

By connecting a cup with a cap, we obtain the well-known protocol for quantum teleportation [42,

43].

𝑡

|Ψ−⟩

⟨Ψ−||𝜓⟩

|𝜓⟩

Figure 2.6: Quantum teleportation. (a) By connecting a cup with a cap, we obtain the protocol for

quantum teleportation.

Note that for the quantum teleportation protocol to work, classical communication of two bits

is required. If classical communication is prohibited, 1/4 of the chance that the correct quantum

state will be teleported. The ensemble of the 1/4 correct teleported state and 3/4 wrong states is

equivalent to a maximally mixed state. This reminds us of the probabilistic nature of the scattering

events in QED. We’ll come back to this problem later.

Now that we have finished with the entanglement part, we are moving on with quantum sensing

part by introducing the single qubit sensor.
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Figure 2.7: Single-qubit sensing protocol. (a) Single-electron spin as a sensor for the magnetic

field. The electron spin is altered after interacting with the unknownmagnetic field. From the change

of the spin, we could extract information regarding the magnetic field. (b) The single-electron

sensor can be abstracted as a qubit applied with an unknown rotation and a projective measurement.

This is the single-qubit sensing protocol.

2.5 Circuit QED and the Single-qubit Sensor

Superconducting transmon qubits coupled to resonators allow researchers to engineer interactions

reminiscent of QED, but on energy scales and physical sizes that are manageable in a typical

laboratory.

2.5.1 Single-Qubit Sensing Protocol

As a starting point, consider a single qubit used for parameter estimation. Conceptually, one can

imagine the sensor is an electron. We let the electron interact with an unknown magnetic field. The

electron spin will be rotated. The amount of rotation encodes the information about the magnetic

field. The schematic is shown in Fig. (2.7a).

Translating the elements into a protocol described by qubit states and rotation operators (Fig.

(2.7b)), the general workflow consists of three steps:
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Figure 2.8: Deficiency of single qubit sensor. (a) Maximum contrast is observed when the rotation

is along the ̂𝒛-axis. (b) Vanishing contrast is observed when the rotation is along the 𝒙̂-axis. We

will define the Fisher information in the next section.

1. State Preparation: Initialize the qubit in a known state, such as

|𝑥+⟩ = 1√
2

(|0⟩ + |1⟩).

2. Unknown rotation: Evolve the qubit with a rotation around an axis 𝒏̂ by an angle 𝛼:

𝑈(𝛼) = e− i 𝛼𝒏̂⋅𝝈/2 (2.7)

3. Measurement: Measure in a suitable basis to estimate 𝛼.

However, the single-qubit approach works well if one already knows 𝒏̂. If 𝒏̂ is unknown, the

initial state choice can become suboptimal. Despite the measurement being performed on the correct

basis, in our case, it is the 𝑌 basis, and depending on the rotation axis, the sensitivity varies. Figures

show the best and the worst-case scenarios that one would expect for a single qubit sensor. In the

best case, the rotation axis is perpendicular to the initial state, which produces maximum contrast

(Fig. (2.8a)).

In order to quantitatively analyze the sensitivity of a sensor, in the next two sections, we introduce

the concepts of quantum and classical Fisher information and the associated Cramér–Rao Bound

[44, 45].
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2.6 Quantum and Classical Fisher Information

This section does not aim for a rigorous derivation but rather aims for a geometric approach

emphasizing intuitive understanding. For simplicity, we limit our discussion to pure states and

projective measurements. The important aspect to understand Fisher information we take is to

consider measuring the distance between quantum states.

Quantum states are vectors in the Hilbert space

|𝜓⟩ = ∑
𝑖

𝑐𝑖 |𝑖⟩ , (2.8)

with complex numbers 𝑐𝑖 = 𝑎𝑖 + i 𝑏𝑖. For an 𝑁-level system, the index 𝑖 chooses an integer value

from 1 to 𝑁 −1. Combining the real and imaginary components, the Hilbert space can be considered

as a 2𝑁-dimensional manifold. The Hilbert space is equipped with an inner product, which provides

a natural way to calculate the length of a vector

𝑙2 = 4||𝜓⟩|2 = 4 ⟨𝜓|𝜓⟩ = 4 ∑
𝑖

|𝑐𝑖|
2 = 4 ∑

𝑖
(𝑎2

𝑖 + 𝑏2
𝑖 ), (2.9)

where 4 is a scaling factor added for convenience.

The simplest way to compare two states is to calculate the difference between them and get

the length of the difference. This motivates us to define the prototype of the distance between two

states as

Δ𝑙2 = 4||𝜓⟩ − |𝜙⟩|2. (2.10)

Distance is a useful concept because it allows us to quantify how different two states are. From

the above expression, we obtain the prototype of an infinitesimal distance between quantum states

d𝑙2 = 4 ⟨d𝜓|d𝜓⟩ . (2.11)

However, the distance defined above is too coarse and includes certain nonphysical effects. In

order to understand the problem, we take a deeper look at the Hilbert space. To work with physically

meaningful states only, we need to impose the normalization condition ⟨𝜓|𝜓⟩ = 1. In other words,
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radius = 2

|0〉

eiφ|1〉

perimeter = 0

perimeter = 4π

Figure 2.9: Bloch sphere with the incorrect metric. The metric given by 𝑑𝑙2 in Eq. (2.14)

corresponds to the upper hemisphere of radius 2. The state |0⟩ appears as a single point with zero
length, while the state |1⟩ appears as a circle with a perimeter of 4𝜋. Though the metric here shows

up as the incorrect option for the Bloch sphere, we will encounter the same metric in the next chapter

when we discuss the two-qubit maximally entangled states.

the quantum states live on a (2𝑁 −1)-dimensional sphere. In addition to the normalization condition,

the quantum state has a free global phase. The topological operation for removing these two extra

degrees of freedom is making all quantum states that are proportional to the same representative

quantum state |𝜓⟩ identified. Namely, the states

|𝜓𝜆⟩ = 𝜆 |𝜓⟩ , (2.12)

with some complex numbers 𝜆 are regarded as the same state as |𝜓⟩, like gluing them into a single

point. The collection of such representative states {|𝜓⟩} forms the projective Hilbert space.

The most familiar example of a projective Hilbert state is the Bloch sphere [43]. We consider

the single-qubit representative quantum states

|𝜓⟩ = cos 𝜃
2

|0⟩ + 𝑒 i 𝜙 sin 𝜃
2

|1⟩ , (2.13)

with the differential

|d𝜓⟩ = 1
2

(− sin 𝜃
2

|0⟩ + e i 𝜙 cos 𝜃
2

|1⟩) d𝜃 + i e i 𝜙 sin 𝜃
2

|1⟩ d𝜙. (2.14)

The infinitesimal distance is written as

d𝑙2 = 4 ⟨d𝜓|d𝜓⟩ = d𝜃2 + 4 sin2 𝜃
2

d𝜙2. (2.15)
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d𝑆2

4 d𝛾2d𝑙2

Figure 2.10: Metric in the projective Hilbert space. In the triangle, the hypotenuse d𝑙 is longer
than the bottom leg d𝑆 due to the contribution from the geometric phase 2 d𝛾. The metric d𝑆2 is

also known as (4 times of) the Fubini-Study metric [46]. Despite the curious visual similarity with

the Minkowski metric Eq. (1.6) in the minus sign, we need to be cautious because here d𝑆2 given

by Eq. (2.19) is positive definite.

However, the metric defined by Eq. (2.15) appears to be incorrect. One way to see the problem

is to calculate the perimeter of the circles of constant latitude.

𝑙 = ∫
𝜋

−𝜋
2 sin 𝜃

2
d𝜙 = 4𝜋 sin 𝜃

2
. (2.16)

At the north pole, 𝜃 = 0, 𝑙 shrinks to 0, as expected. However, at the south “pole” where 𝜃 = 𝜋,

we have 𝑙 = 4𝜋. The geometry faithfully respects this wrong metric would be a hemisphere with a

radius of 2 (Fig. (2.9)).

The problem is that when we are transporting the quantum state on the Bloch sphere, the attached

phase is also evolving. This is the geometric phase [46, 47]

d𝛾 = i ⟨𝜓|d𝜓⟩

= 𝒜𝜃 d𝜃 + 𝒜𝜙 d𝜙,
(2.17)

where

𝒜𝜃 = i ⟨𝜓|𝜕𝜃𝜓⟩ = 0,

𝒜𝜙 = i ⟨𝜓∣𝜕𝜙𝜓⟩ = sin2 𝜃
2

,
(2.18)

are the components of the Berry connection [46]. The value of the Berry connection is dependent

on the choice of the representative quantum states, also known as the gauge dependence.

Since the change in the global phase does not generate a physically measurable effect, we need

to subtract the contribution from the geometric phase

d𝑆2 = d𝑙2 − 4 d𝛾2 = 4(⟨d𝜓|d𝜓⟩ − |⟨𝜓|d𝜓⟩|2). (2.19)
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perimeter = 4π

radius = 1

|0〉

|1〉

Figure 2.11: Bloch sphere. Each quantum state of a single qubit is mapped to a point on a unit

sphere. Every point on the sphere is attached with a circle of perimeter 4𝜋 encoding the global phase

of the qubit (the size is not up to scale in the figure). The fact that a 4𝜋-rotation is needed to recover
the qubit in its original global phase is a property of the spin-1/2 structure. The combination of the

Bloch sphere and the circles in this setting is homeomorphic to 𝑆3, a geometric mapping known as

the Hopf fibration. 𝑆3 with each of these circles identified as a single point produces the Bloch

sphere.

For a qubit, we have

d𝑆2 = d𝜃2 + 4 (sin2 𝜃
2

− sin4 𝜃
2

) d𝜙2 = d𝜃2 + sin2 𝜃 d𝜙2, (2.20)

which is the usual metric on a unit sphere.

We connect the geometric concepts with classical probability distribution with a set of angles

0 ≤ 𝜃𝑖 ≤ 𝜋,

𝑃𝑖 = |⟨𝑖|𝜓⟩|2 = cos2 𝜃𝑖
2

= 1
2

(1 + cos 𝜃𝑖). (2.21)

Geometrically, these angles are given by the length of the shortest path connecting |𝜓⟩ and |𝑖⟩.

These paths are also called the geodesics. The geodesics in the projective Hilbert space are arcs cut

from the great circles, which makes the calculation of the length particularly easy. Although the

projective Hilbert space is not a sphere, in general, we could use the Bloch sphere to demonstrate

the idea. Two states separated by an arc length equal to 𝜋 are orthogonal to each other.
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|ψ〉

|φ〉

S

|0〉

|1〉

Figure 2.12: Geodesic on the Bloch sphere. Geodesics are special kinds of trajectories on a

manifold. On the Bloch sphere, a geodesic is the great circle with 2𝜋 perimeter. For any two distinct

states |𝜓⟩ and |𝜙⟩, there is a unique great circle passing through both of them. The length of the

minor arc connecting them defines their distance 𝑆 from each other. Generally, by reading the

length of the trajectories, the value of the quantum Fisher information can be obtained. Particularly,

the trajectories with maximal quantum Fisher information are the geodesics.

These angles satisfy the constraint,

1 = ∑
𝑖

𝑃𝑖 = ∑
𝑖

cos2 𝜃𝑖
2

= 1
2

∑
𝑖

(1 + cos 𝜃𝑖). (2.22)

Differentiating the above expression gives us the constraint on the infinitesimal changes,

∑
𝑖

sin 𝜃𝑖 d𝜃𝑖 = 0. (2.23)

The quantum state has the general form

|𝜓⟩ = ∑
𝑖

𝑒 i 𝜙𝑖 cos 𝜃𝑖
2

|𝑖⟩ , (2.24)

with the differential

|d𝜓⟩ = ∑
𝑖

(−1
2

sin 𝜃𝑖
2

𝑑𝜃𝑖 + i cos 𝜃𝑖
2

𝑑𝜙𝑖) 𝑒 i 𝜙𝑖 |𝑖⟩ . (2.25)
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We proceed with calculating the distances

d𝑙2 = 4||d𝜓⟩|2

= ∑
𝑖

sin2 𝜃𝑖
2

d𝜃2
𝑖 + 4 ∑

𝑖
cos2 𝜃𝑖

2
d𝜙2

𝑖 .
(2.26)

The contribution from the geometric phase

d𝛾2 = |⟨𝜓|d𝜓⟩|2

= ∣∑
𝑖

cos 𝜃𝑖
2

(−1
2

sin 𝜃𝑖
2

d𝜃𝑖 + i cos 𝜃𝑖
2

d𝜙𝑖)∣
2

= ∣∑
𝑖

(−1
4

sin 𝜃𝑖𝑑𝜃𝑖 + i cos2 𝜃𝑖
2

d𝜙𝑖)∣
2

.

(2.27)

Using Eq. (2.23)

d𝛾2 = ∣∑
𝑖

cos2 𝜃𝑖
2

d𝜙𝑖∣
2

= ∣∑
𝑖

(cos 𝜃𝑖
2

⋅ cos 𝜃𝑖
2

d𝜙𝑖)∣
2

≤ (∑
𝑖

cos2 𝜃𝑖
2

) ⋅ (∑
𝑖

cos2 𝜃𝑖
2

d𝜙2
𝑖 )

= ∑
𝑖

cos2 𝜃𝑖
2

d𝜙2
𝑖 ,

(2.28)

where the upper bound is evaluated with the Cauchy-Schwarz inequality. The inequality is saturated

only when the vectors cos(𝜃𝑖/2) and cos(𝜃𝑖/2) d𝜙𝑖 are proportional, namely

cos 𝜃𝑖
2

d𝜙𝑖 = cos 𝜃𝑖
2

d𝜉, (2.29)

for some infinitesimal change in the global phase d𝜉, ruling out any contribution from the relative

phases. In fact, this condition simply implies d𝛾 = d𝜉.
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d𝑆2 = d𝑙2 − 4 d𝛾2

= ∑
𝑖

sin2 𝜃𝑖
2

d𝜃2
𝑖 + 4 ∑

𝑖
cos2 𝜃𝑖

2
d𝜙2

𝑖 − 4∣∑
𝑖

cos2 𝜃𝑖
2

d𝜙𝑖∣
2

≥ ∑
𝑖

sin2 𝜃𝑖
2

d𝜃2
𝑖

= ∑
𝑖

(2 d cos 𝜃𝑖
2

)
2

= ∑
𝑖

(2 d√𝑃𝑖)
2

.

(2.30)

This motivates us to define another metric for the manifold of probability distributions.

d𝑠2 = ∑
𝑖

(2 d√𝑃𝑖)
2

= ∑
𝑖

d𝑃 2
𝑖

𝑃𝑖
(2.31)

The summary is below

d𝑙2 =

d𝑆2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞d𝑠2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
⎛⎜⎜
⎝

Distance from

Probability distribution
⎞⎟⎟
⎠

2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
∝ Classical Fisher information 𝐹

+ ⎛⎜⎜
⎝

Distance from

Relative phases
⎞⎟⎟
⎠

2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
∝ Quantum Fisher information ℱ

+

4 d𝛾2

⏞⏞⏞⏞⏞⏞⏞⏞⏞
⎛⎜⎜
⎝

Distance from

Global phase
⎞⎟⎟
⎠

2

.

(2.32)

In order to relate the geometric distance with measurable quantities, we parameterize a trajectory

in either space with 𝛼. The expressions are

𝑃𝑖 = 𝑃𝑖(𝛼), |𝜓⟩ = |𝜓𝛼⟩ , (2.33)

with the differentials

d𝑃𝑖 = 𝜕𝛼𝑃𝑖(𝛼) d𝛼, |d𝜓⟩ = |𝜕𝛼𝜓𝛼⟩ d𝛼. (2.34)

The rate of change d𝑠/𝑑𝛼 and d𝑆/𝑑𝛼 could be understood as the analogue of a velocity. The square

of this velocity is defined as the classical Fisher information

𝐹𝛼 = ( d𝑠
d𝛼

)
2

= ∑
𝑖

[𝜕𝛼𝑃𝑖(𝛼)]2

𝑃𝑖(𝛼)
, (2.35)
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and quantum Fisher information [48–50]

ℱ𝛼 = (d𝑆
d𝛼

)
2

= ( d𝑙
d𝛼

)
2

− 4 ( d𝛾
d𝛼

)
2

= 4(⟨𝜕𝛼𝜓𝛼|𝜕𝛼𝜓𝛼⟩ − |⟨𝜓𝛼|𝜕𝛼𝜓𝛼⟩|2). (2.36)

Eq. (2.32) implies d𝑠2 ≤ d𝑆2, which results in

𝐹𝛼 ≤ ℱ𝛼. (2.37)

In the next section, we relate the left-hand side, the classical Fisher information, with the variance

of an unbiased estimator by establishing the Cramér–Rao Bound.

2.7 Cramér–Rao Bound

We can reinterpret the classical Fisher information 𝐹𝛼 as follows:

𝐹𝛼 = ∑
𝑖

(𝜕𝛼𝑃𝑖(𝛼))2

𝑃𝑖(𝛼)
= ∑

𝑖
𝑃𝑖(𝛼) (𝜕𝛼𝑃𝑖(𝛼)

𝑃𝑖(𝛼)
)

2

= ∑
𝑖

𝑃𝑖(𝛼) 𝑉𝑖(𝛼)2 = E[𝑉𝑖(𝛼)2],

(2.38)

where E[⋅] denotes an expectation value, and

𝑉𝑖(𝛼) = 𝜕𝛼𝑃𝑖(𝛼)
𝑃𝑖(𝛼)

(2.39)

is a statistical quantity called the score. The score has a zero mean:

E[𝑉𝑖(𝛼)] = ∑
𝑖

𝑃𝑖(𝛼) 𝜕𝛼𝑃𝑖(𝛼)
𝑃𝑖(𝛼)

= 𝜕𝛼∑
𝑖

𝑃𝑖(𝛼) = 𝜕𝛼(1) = 0. (2.40)

Hence, 𝐹𝛼 is the variance of 𝑉𝑖(𝛼):

𝐹𝛼 = E[𝑉𝑖(𝛼)2] − E[𝑉𝑖(𝛼)]2 = var[𝑉𝑖(𝛼)]. (2.41)

Next, consider an unbiased estimator ̂𝛼 of 𝛼:

E[ ̂𝛼] = 𝛼. (2.42)
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We calculate the covariance between 𝑉𝑖(𝛼) and ̂𝛼:

cov[𝑉𝑖(𝛼), ̂𝛼] = E[𝑉𝑖(𝛼) ̂𝛼] − E[𝑉𝑖(𝛼)] E[ ̂𝛼]

= ∑
𝑖

𝑃𝑖(𝛼) 𝜕𝛼𝑃𝑖(𝛼)
𝑃𝑖(𝛼)

̂𝛼 = 𝜕𝛼∑
𝑖

𝑃𝑖(𝛼) ̂𝛼

= 𝜕𝛼 E[ ̂𝛼] = 1.

(2.43)

Using the Cauchy–Schwarz inequality on cov[𝑉 , ̂𝛼]:

1 = (cov[𝑉 , ̂𝛼])2 ≤ var[𝑉 ] var[ ̂𝛼] = 𝐹𝛼 var[ ̂𝛼], (2.44)

which implies

var[ ̂𝛼] ≥ 1
𝐹𝛼

. (2.45)

If the experiment is repeated 𝑁 times, the bound generalizes to

var[ ̂𝛼] ≥ 1
𝑁 𝐹𝛼

, (2.46)

the standard Cramér–Rao inequality for an unbiased estimator over 𝑁 samples.

Hence, these definitions and properties establish the key tools for analyzing the performance

limits of a quantum sensor. In the next section, we will apply this framework to a single-qubit

sensing protocol.

2.8 Generalized Uncertainty Principle

Following the velocity analogue, we could write down the analogue of a Schrödinger equation for a

parameterized trajectory

i |𝜕𝛼𝜓𝛼⟩ = ℎ̂ |𝜓𝛼⟩ , (2.47)

where the Hermitian operator ℎ̂ is the generator of the evolution operator

𝑈𝛼 = e− i ℎ̂𝛼. (2.48)
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We have

( d𝑙
d𝛼

)
2

= 4 ⟨𝜕𝛼𝜓𝛼|𝜕𝛼𝜓𝛼⟩ = 4 ⟨𝜓𝛼|ℎ̂2|𝜓𝛼⟩ = 4 ⟨ℎ̂2⟩ (2.49)

and

( d𝛾
d𝛼

)
2

= |⟨𝜓𝛼|𝜕𝛼𝜓𝛼⟩|2 = ∣ ⟨𝜓𝛼|ℎ̂|𝜓𝛼⟩∣
2

= ⟨ℎ̂⟩
2

(2.50)

The quantum Fisher information is four times of the quantum mechanical variance of the operator

ℱ𝛼 = ( d𝑙
d𝛼

)
2

− 4 ( d𝑙
d𝛾

)
2

= 4 (⟨ℎ̂2⟩ − ⟨ℎ̂⟩
2
) = 4 (Δℎ)2 . (2.51)

Combining this with the Cramér-Rao bound gives rise to the generalized uncertainty principle.

Δ𝛼Δℎ ≥ 1
2

, (2.52)

where Δ𝛼 =
√

var ̂𝛼 is the uncertainty of the estimator ̂𝛼, which originates from a statistical

perspective. While Δℎ is calculated from the expectation value of an operator, which is of quantum

mechanical nature. This expression brings together the conjugate pair consisting of seemingly

different types of quantities in a unified, symmetric manner.

2.9 Single Qubit Sensor

We consider a general qubit state in the 𝒙̂- ̂𝒛-plane parameterized by angle 𝜆,

|𝜓𝛼=0⟩ = cos 𝜆
2

|0⟩ + sin 𝜆
2

|1⟩ . (2.53)

To simplify the problem, we choose the rotation axis also within the 𝒙̂- ̂𝒛-plane:

𝒏̂ = sin 𝜃 𝒙̂ + cos 𝜃 ̂𝒛. (2.54)

The corresponding rotation operator is

𝑈𝛼 = 𝑅𝒏̂(𝛼) = ⎛⎜⎜
⎝

cos 𝛼
2

− i sin 𝛼
2

cos 𝜃 − i sin 𝛼
2

sin 𝜃

− i sin 𝛼
2

sin 𝜃 cos 𝛼
2

+ i sin 𝛼
2

cos 𝜃

⎞⎟⎟
⎠

. (2.55)
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(b)

Figure 2.13: Single-qubit sensing protocol on the Bloch sphere. (a) The blue and red solid lines

represent the possible initial states. The green line represents the rotation axis 𝒏̂. The blue dashed

line represents the qubit state after 𝜋-rotation. The purple circle represents the trajectory of the qubit
state during the rotation. The perimeter of the circle is 2𝜋|sin(𝜃 − 𝜆)|. The purple arrow represents

the vector tangent to the circle at the initial state. The tangent vector is always along the ± ̂𝒚-axis.
(b) The same geometry represented in the 𝒙̂- ̂𝒛-plane for clarity.

After the rotation

|𝜓𝛼⟩ = 𝑈𝛼 |𝜓𝛼=0⟩

= [(cos 𝛼
2

− i sin 𝛼
2

cos 𝜃) cos 𝜆
2

− i sin 𝛼
2

sin 𝜃 sin 𝜆
2

] |0⟩

+ [− i sin 𝛼
2

sin 𝜃 cos 𝜆
2

+ (cos 𝛼
2

+ i sin 𝛼
2

cos 𝜃) sin 𝜆
2

] |1⟩

= [cos 𝛼
2

cos 𝜆
2

− i sin 𝛼
2

cos (𝜃 − 𝜆
2

)] |0⟩

+ [cos 𝛼
2

sin 𝜆
2

− i sin 𝛼
2

sin (𝜃 − 𝜆
2

)] |1⟩

= cos 𝛼
2

|𝜓𝛼=0⟩ + sin 𝛼
2

|𝜓𝛼=𝜋⟩

(2.56)

where

|𝜓𝛼=𝜋⟩ = − i [cos (𝜃 − 𝜆
2

) |0⟩ + sin (𝜃 − 𝜆
2

) |1⟩] . (2.57)

The quantum and classical Fisher information are calculated in the following subsections.
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2.9.1 Quantum Fisher Information

The quantum Fisher information can be calculated in multiple ways:

1. Evaluating Eq. (2.36) directly

We calculate the derivative

|𝜕𝛼𝜓𝛼⟩ = 1
2

(− sin 𝛼
2

|𝜓𝛼=0⟩ + cos 𝛼
2

|𝜓𝛼=𝜋⟩) . (2.58)

We first calculate the inner product

⟨𝜓𝛼=0|𝜓𝛼=𝜋⟩ = − i cos(𝜃 − 𝜆). (2.59)

Next, we calculate

( d𝑙
d𝛼

)
2

= 4 ⟨𝜕𝛼𝜓𝛼|𝜕𝛼𝜓𝛼⟩ = 1, (2.60)

and

d𝛾
d𝛼

= i ⟨𝜓𝛼|𝜕𝛼𝜓𝛼⟩ = 1
2

cos(𝜃 − 𝜆). (2.61)

The quantum fisher information is calculated

ℱ𝛼 = ( d𝑙
d𝛼

)
2

− 4 ( d𝛾
d𝛼

)
2

= sin2(𝜃 − 𝜆). (2.62)

2. Using the generalized uncertainty principle

Alternatively, one could use the generalized uncertainty principle with the generator

ℎ̂ = 1
2

𝝈 ⋅ 𝒏̂ = 1
2

(sin 𝜃𝜎𝑥 + cos 𝜃𝜎𝑧) (2.63)

We calculate the expectation values with regard to the initial state |𝜓𝛼=0⟩

⟨ℎ̂2⟩ = 1
4

⟨𝐼⟩ = 1
4

, (2.64)

37



where 𝐼 is the identity operator, and

⟨ℎ̂⟩ = 1
2

(sin 𝜃 ⟨𝜎𝑥⟩ + cos 𝜃 ⟨𝜎𝑧⟩)

= 1
2

[2 sin 𝜃 sin 𝜆
2

cos 𝜆
2

+ cos 𝜃 (cos2 𝜆
2

− sin2 𝜆
2

)]

= 1
2

(sin 𝜃 sin 𝜆 + cos 𝜃 cos 𝜆)

= 1
2

cos(𝜃 − 𝜆)

(2.65)

We arrive at the same value

ℱ𝛼 = 4 (⟨ℎ̂2⟩ − ⟨ℎ̂⟩
2
) = sin2(𝜃 − 𝜆) (2.66)

3. Measuring the length of the trajectory geometrically

After every a 2𝜋 rotation Δ𝛼 = 2𝜋, The perimeter of the circular trajectory is

Δ𝑆 = 2𝜋|sin(𝜃 − 𝜆)|, (2.67)

Comparing these two lengths, we arrive at

ℱ𝛼 = (Δ𝑆
Δ𝛼

)
2

= (2𝜋|sin(𝜃 − 𝜆)|
2𝜋

)
2

= sin2(𝜃 − 𝜆). (2.68)

The result shows that the quantum Fisher information is independent of the rotation angle 𝛼 but

is sensitive to the relative alignment between the rotation axis and the initial state. The maximum

value ℱ𝛼 = 1 is only achieved when rotation axis and the initial state are perpendicular with each

other on the Bloch sphere (𝜃 − 𝜆 = ±𝜋/2) [49, 51, 52]. However in the worst case where the initial

state and the rotation axis are aligned or opposite (𝜃 − 𝜆 = 0 or 𝜋), the quantum Fisher information

completely vanishes.

In order to experimentally obtain the quantum Fisher information, we need to perform measure-

ment in a chosen basis. From the resulting probability distribution, we could extract the classical

Fisher information.
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2.9.2 Classical Fisher Information

From the Fig. (2.13a) we see the circular trajectory always starts with a tangent vector in parallel

with ̂𝒚. This indicates the 𝑦-basis can be chosen as the measurement basis. We check it with the

calculation. The 𝑌 eigenbasis is defined by

|𝑦±⟩ = 1√
2

(|0⟩ ± i |1⟩). (2.69)

|𝜓𝛼⟩ = 𝑈𝛼 |𝜓𝛼=0⟩

= [cos 𝛼
2

cos 𝜆
2

− i sin 𝛼
2

cos (𝜃 − 𝜆
2

)] |0⟩

+ [cos 𝛼
2

sin 𝜆
2

− i sin 𝛼
2

sin (𝜃 − 𝜆
2

)] |1⟩ .

(2.70)

We calculate the probability of the measurement outcome

𝑃𝑦+(𝛼) = |⟨𝑦+|𝜓𝛼⟩|2

= 1
2

∣cos 𝛼
2

cos 𝜆
2

− i sin 𝛼
2

cos (𝜃 − 𝜆
2

) − i cos 𝛼
2

sin 𝜆
2

− sin 𝛼
2

sin (𝜃 − 𝜆
2

)∣
2

= 1
2

{1 − 2 sin 𝛼
2

cos 𝛼
2

[sin (𝜃 − 𝜆
2

) cos 𝜆
2

− cos (𝜃 − 𝜆
2

) sin 𝜆
2

]}

= 1
2

[1 − sin 𝛼 sin(𝜃 − 𝜆)]
(2.71)

and

𝑃𝑦−(𝛼) = 1 − 𝑃𝑦+(𝛼) = 1
2

[1 + sin 𝛼 sin(𝜃 − 𝜆)] (2.72)

The classical Fisher information

𝐹𝛼 =
[𝜕𝛼𝑃𝑦+(𝛼)]2

𝑃𝑦+(𝛼)
+

[𝜕𝛼𝑃𝑦−(𝛼)]2

𝑃𝑦−(𝛼)

= 1
2

[ cos2 𝛼 sin2(𝜃 − 𝜆)
1 − sin 𝛼 sin(𝜃 − 𝜆)

+ cos2 𝛼 sin2(𝜃 − 𝜆)
1 + sin 𝛼 sin(𝜃 − 𝜆)

]

= cos2 𝛼 sin2(𝜃 − 𝜆)
1 − sin2 𝛼 sin2(𝜃 − 𝜆)

(2.73)

From the result, unlike the quantum Fisher information, the classical Fisher information is

dependent on both 𝛼 and (𝜃 − 𝜆). This is because the optimal measurement basis in dependent on
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Figure 2.14: (2.8) Single qubit sensing. Blue curve shows when the initial state is along the ̂𝒛-axis
(𝜆 = 0), and the Red curve shows when the initial state is along ( ̂𝒛 − 𝒙̂)/

√
2-axis (𝜆 = −𝜋/4).

𝛼. Fortunately, the maximum value is always achieved near 𝛼 = 0 or 𝜋, where the quantum fisher

information is achieved.

2.9.3 Experimental Investigation for the Single Qubit Sensor

In order to experimentally test the ideas, we use superconducting transmon qubits.

We use curve fitting

𝑃𝑦−(𝛼) = 𝐴 + 𝐵 sin(𝛼 + 𝛿). (2.74)

with 𝑃𝑦+(𝛼) = 1 − 𝑃𝑦−(𝛼). The experimentally measured Fisher information is

𝐹𝛼 =
[𝜕𝛼𝑃𝑦+(𝛼)]2

𝑃𝑦+(𝛼)
+

[𝜕𝛼𝑃𝑦−(𝛼)]2

𝑃𝑦−(𝛼)

= 𝐵2 cos2(𝛼 + 𝛿)
𝐴 + 𝐵 sin(𝛼 + 𝛿)

+ 𝐵2 cos2(𝛼 + 𝛿)
1 − 𝐴 − 𝐵 sin(𝛼 + 𝛿)

(2.75)

The point with the largest slope is 𝛼 = −𝛿, from which we extract the Fisher information

𝐹 = 𝐹𝛼=−𝛿 = 𝐵2

𝐴
+ 𝐵2

1 − 𝐴
= 𝐵2

𝐴(1 − 𝐴)
(2.76)

𝐹 is a function of 𝜃 because it is dependent on the rotation axis.
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(𝐼 ⊗ ⟨𝑏+|) |Ψ−⟩ = = − |𝑏−⟩= (−1)

|Ψ−⟩

⟨𝑏+|

|𝑏−⟩

(𝐼 ⊗ ⟨𝑏−|) |Ψ−⟩ = = |𝑏+⟩=

|Ψ−⟩

⟨𝑏−|

|𝑏+⟩

Figure 2.15: Basis independence of the singlet state. Projecting one of the qubits in a singlet state

will always puts the other qubit in the orthogonal state (with a possible change in the global phase).

Even if the measurement basis is optimally chosen, the optimal initial state has to be dependent

on the rotation axis. Without knowing the optimal initial state, one can learn about the rotation

through quantum-process tomography [43, 53–56]. However, process tomography requires many

applications of the rotation. Is there an approach to exploit the CTC to determine the optimal initial

state after the rotation axis is revealed at a later time? In order to understand this, we first examine

the rotational invariance of the singlet state.

2.10 Rotational Invariance of the Singlet State

The singlet state is defined as

|Ψ−⟩ = 1√
2

(|0⟩ |1⟩ − |1⟩ |0⟩) . (2.77)

Singlet state has the basis independent property. In order to see this, we define the unit vector

𝒃̂ = sin 𝜃𝑏 cos 𝜙𝑏 𝒙̂ + sin 𝜃𝑏 sin 𝜙𝑏 ̂𝒚 + cos 𝜃𝑏 ̂𝒛. (2.78)
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The eigenstates of the Pauli operator 𝝈 ⋅ 𝒃̂ are

|𝑏+⟩ = cos 𝜃𝑏
2

|0⟩ + e i 𝜙𝑏 sin 𝜃𝑏
2

|1⟩ ,

|𝑏−⟩ = −e− i 𝜙𝑏 sin 𝜃𝑏
2

|0⟩ + cos 𝜃𝑏
2

|1⟩ ,
(2.79)

which define a orthonormal basis. The singlet state in this {|𝑏±⟩} basis is written as

|Ψ−
𝑏 ⟩ = 1√

2
(|𝑏+⟩ |𝑏−⟩ − |𝑏−⟩ |𝑏+⟩)

= 1√
2

[(cos 𝜃𝑏
2

|0⟩ + e i 𝜙𝑏 sin 𝜃𝑏
2

|1⟩) (−e− i 𝜙𝑏 sin 𝜃𝑏
2

|0⟩ + cos 𝜃𝑏
2

|1⟩)

− (−e− i 𝜙𝑏 sin 𝜃𝑏
2

|0⟩ + cos 𝜃𝑏
2

|1⟩) (cos 𝜃𝑏
2

|0⟩ + e i 𝜙𝑏 sin 𝜃𝑏
2

|1⟩)]

= 1√
2

[(−e− i 𝜙𝑏 sin 𝜃𝑏
2

cos 𝜃𝑏
2

|0⟩ |0⟩ + cos2 𝜃𝑏
2

|0⟩ |1⟩

− sin2 𝜃𝑏
2

|1⟩ |0⟩ + e i 𝜙𝑏 sin 𝜃𝑏
2

cos 𝜃𝑏
2

|1⟩ |1⟩)

− (−e− i 𝜙𝑏 sin 𝜃𝑏
2

cos 𝜃𝑏
2

|0⟩ |0⟩ − sin2 𝜃𝑏
2

|0⟩ |1⟩

+ cos2 𝜃𝑏
2

|1⟩ |0⟩ + e i 𝜙𝑏 sin 𝜃𝑏
2

cos 𝜃𝑏
2

|1⟩ |1⟩)]

= 1√
2

(|0⟩ |1⟩ − |1⟩ |0⟩) ,

(2.80)

which is the same as the singlet state defined in Eq. (2.84). This diagramatic representation is

shown in Fig. (2.15).

The rotation operator along the 𝒃̂-axis is

𝑅𝒃̂(𝛼) = 𝐼 cos 𝛼
2

− i 𝝈 ⋅ 𝒃̂ sin 𝛼
2

= cos 𝛼
2

(|𝑏+⟩⟨𝑏+| + |𝑏−⟩⟨𝑏−|) − i sin 𝛼
2

(|𝑏+⟩⟨𝑏+| − |𝑏−⟩⟨𝑏−|)

= e− i 𝛼/2 |𝑏+⟩⟨𝑏+| + e i 𝛼/2 |𝑏−⟩⟨𝑏−| .

(2.81)

Applying simultaneus rotations on the two qubits

[𝑅𝒃̂(𝛼) ⊗ 𝑅𝒃̂(𝛼)]] |Ψ−⟩

= 1√
2

(e− i 𝛼/2 |𝑏+⟩ e i 𝛼/2 |𝑏−⟩ − e i 𝛼/2 |𝑏−⟩ e− i 𝛼/2 |𝑏+⟩)

= |Ψ−⟩ ,

(2.82)
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(𝑈 ⊗ 𝑈) |Ψ−⟩ = = (det 𝑈) |Ψ−⟩= (det 𝑈)

|Ψ−⟩

𝑈 𝑈

|Ψ−⟩

Figure 2.16: Rotational invariance of the singlet state. The singlet state is unchanged after

simultaneously applying the same unitary operator on both of the qubits (up to a global phase).

where ⊗ represents the tensor product. For arbitrary unitary with an extra phase factor 𝑈 = 𝑒 i 𝜉𝑅𝒃̂,

Eq. (2.82) is correct upto a global phase

(𝑈 ⊗ 𝑈) |Ψ−⟩ = (det 𝑈) |Ψ−⟩ , (2.83)

where det 𝑈 = 𝑒2 i 𝜉 is the determinant of 𝑈.

2.11 Hindsight Sensing Protocol

We exploit the basis independence property of the singlet state to prepare the optimal initial state

for the probe qubit.

The system consists of a probe qubit and an ancilla qubit. They are prepared in a singlet state

|Ψ−⟩ = 1√
2

(|0⟩P |1⟩A − |1⟩P |0⟩A) . (2.84)

2.11.1 Protocol Outline

The Hindsight Sensing protocol proceeds as follows:

1. Initial Entanglement: Prepare two qubits (probe + ancilla) in the singlet state |Ψ−⟩.

2. Unknown Rotation: Apply the unknown unitary 𝑈𝛼 to the probe qubit.

3. Axis Revelation and Measurement: Once 𝒏̂ is revealed at 𝑡2, perform a projective measure-

ment on the ancilla qubit in the basis aligned with 𝒏̂.
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4. Time Reversal Interpretation: By the diagrammatic rules, this measurement outcome is

fed back to the probe’s initial state at 𝑡0, effectively ensuring the probe was prepared in the

optimal initial state for the now-known axis 𝒏̂.

2.11.2 Experimental Observations

In our transmon qubit device, we initialize the two qubits in the singlet state.

This means if we perform a projective measurement on the ancilla qubit in {|𝑏±⟩}, we have two

equally possible outcomes. If the ancilla is measured to be |𝑏+⟩, the state of the probe is set to be

|𝑏−⟩. And if the ancilla is measured to be |𝑏−⟩, the state of the probe is set to be |𝑏+⟩. In this way,

we could use the ancilla qubit to effectively alter the state of the probe qubit, even after the rotation.

and implement the rotation 𝑈(𝛼). We then measure various correlation observables.

A key experimental finding is that single-qubit expectation values of the probe remain essentially

zero, indicating that all the relevant information about 𝛼 is stored in the two-qubit correlations.

Shown in Fig. (2.17b).

By choosing the ancilla measurement basis based on 𝒏̂, we detect a near-constant Fisher

information over a wide range of 𝒏̂. The measured value ≈ 0.82 approaches the theoretical

maximum 1 for a single qubit, outperforming the single-qubit protocol in which the axis is unknown

at the outset.

What if the rotation axis is never known?

2.12 Agnostic Sensing Protocol

We first consider the case where no rotation is applied on the qubit. The system is prepared in the

single state |Ψ−⟩, and projected back to ⟨Ψ−|. This could be understood as the analogue of a CTC.

The probability will always be 1 (Fig. (2.18)).

Next, we consider adding a rotation. As is shown in Fig. (2.19a)
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Figure 2.17: Hindsight sensing. (a) Schematic for the hindsight sensing protocol. (b) The expecta-

tion value of the single-body Pauli operators vanishes.

2.12.1 Concepts

The Agnostic Sensing protocol removes the requirement that n is revealed at any stage. Here:

1. Start in |Ψ−⟩.

2. Apply 𝑈 ̂(𝛼) on the probe qubit.

3. Close the loop by projecting back into |Ψ−⟩ for both qubits, effectively forming a closed
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𝑡

|Ψ−⟩

⟨Ψ−|

Figure 2.18: Entanglement analogue of a CTC. By connecting a cup with a cap, we prepare

the system in an entangled state, let the two qubits wait for some time, and perform a projective

measurement which collapse the quantum state into the same initial entangled state. Without

additional interactions, the probability will be 1. Alternatively, this diagram can be interpreted as

one qubit traveling forward and backward in time, following a closed time-like curve.

time-like curve without explicit knowledge of ̂.

Because the qubits begin and end in the same entangled state, any change in the probability of

returning to |Ψ−⟩ directly encodes 𝛼. This global effect is axis-independent.

2.12.2 Results and Performance

Experimentally, we measure the probability that the two-qubit system returns to |Ψ−⟩ after the

unknown rotation 𝑈(𝛼). Fitting this probability over varying 𝛼 provides the Fisher information,

which averages around 0.72. While slightly lower than the hindsight protocol, it still surpasses the

best classical ancilla protocol bound of 2
3 . This shows a clear quantum advantage in the axis-agnostic

scenario.

Figure 2.20 shows a simplified illustration of how the return probability changes with 𝛼. The

experimental points (blue circles) closely match the theoretical model (red line), demonstrating

consistent axis independence across multiple rotation directions.
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Figure 2.19: Agnostic sensing protocol. (a) Schematic of the agnostic sensing protocol.

2.12.3 Finite Fidelity

In the presence of finite state fidelity, the Fisher information degrades. We define the fidelity of

quantum states 𝜌 with respect to a target quantum state 𝜎 as

𝔉 = (tr √𝜌
√

𝜎𝜌)
2

(2.85)

In our case, the target state is the singlet state 𝜎 = |Ψ−⟩⟨Ψ−|. We model the realistc quantum state

to be an incoherent mixture of the singlet state and a maximally mixed state.

𝜌 = 𝔉 |Ψ−⟩⟨Ψ−| + 1
3

(1 − 𝔉)(𝟙 − |Ψ−⟩⟨Ψ−|) (2.86)

The Fisher information is calculated as

𝐹𝛼 = − (1 − 4𝔉)2 sin2 𝛼
[−5 + 2𝔉 + (−1 + 4𝔉) cos 𝛼] [1 + 2𝔉 + (−1 + 4𝔉) cos 𝛼]

(2.87)

We find the Fisher information is highly sensitive to the infidelity of the input state. Especially,

the Fisher information vanishes near 𝛼 = 0 or 𝜋 for realistic entangled state with arbitrarily small

infidelity. This motivates us to consider whether we could circumvent this drawback. We will come

back to this problem in the next chapter.
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Figure 2.20: Finite fidelity. The curves show the dependence of Fisher information with respect

to the fidelity of the singlet state. The different fidelity values of the singlet state are labeled by

different colors and line styles.

2.13 Classical Ancilla

The optimal classical approach is given by a classical ancilla protocol. The density matrix has the

general form of

𝜌 = ∑
𝑗

𝑝𝑗 ∣𝜓𝑗⟩⟨𝜓𝑗∣ ⊗ |𝑗⟩⟨𝑗| , (2.88)

where 𝑝𝑗 satisfy

∑
𝑗

𝑝𝑗 = 1. (2.89)

For our case, the optimal classical ancilla state could be chosen as

𝜌0 = 1
3

(|𝑥+⟩⟨𝑥+| ⊗ |1⟩⟨1| + |𝑦+⟩⟨𝑦+| ⊗ |2⟩⟨2| + |𝑧+⟩⟨𝑧+| ⊗ |3⟩⟨3|) (2.90)

The classical upper bound for the Fisher information is 2/3, which could be intuitively understood

(Fig. 5.11).

2.14 Summary

Our experimental data and theoretical analysis confirm the following:
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t

Figure 2.21: classical ancilla. Intuitively, only 2/3 of the chance the initial state of the sensor is

sensitive to an unknown rotation. The quantum Fisher information of a classical ancilla approach is

2/3.

• Single-Qubit Sensing fails to maintain optimal sensitivity when the rotation axis is unknown.

• Hindsight Sensing allows near-maximal Fisher information (≈ 0.82) by postponing the

choice of measurement basis until after the axis is revealed.

• Agnostic Sensing achieves axis independence without any knowledge of n, exhibiting FI ≈

0.72, above the classical ancilla limit of 2
3 .

These results underscore the power of quantum entanglement for metrology tasks where no a

priori information about the parameter of interest is available.

2.15 Discussion

The last section is for a discussion of whether allowing quantum systems evolving backward in time

is physical.

The time as we perceive always flows in one direction. One would wonder, how would evolution

along a closed time-like curve possible? The seemingly contradiction comes the from the fact that

we are working with a system dominated by quantum mechanical evolution of pure states. This

assumption is both true for QED and the cQED when the environmental couplings are neglected

during the timescale of interest. In order for irreversible effects to become manifest, we would need
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Figure 2.22: Arrows of time. There are at least three arrows of time: the direction in which disorder

increases, the direction in which we perceive time passes, the direction in which the universe

increases in size (Stephen Hawking) [57].

to consider a larger system, where the dynamics of open quantum systems and thermodynamical

laws come to play. An large ensemble in the nature tend to behave in an irreversible fashion.

On the other hand, if we work with such a near-ideal quantum system, evolution backward in

time should be considered as a type of resource that we could exploit. We have presented the idea of

the metrological advantage achievable with closed time-like curves. More applications potentially

exist.

In chapter one, we introduced the quantization of flux which could be considered as a closed

time-like curve. We can make a comparison of them. The CTC we in counter in superconderctors

is protected by the thermodynamics. Because it’s energetically infavorable to break the order
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parameter of the superconductor. However, here in this chapter, CTC is implemented with quantum

gates and quantum measurements. The difference is, the latter one is not protect by thermodynamics.

The condition of the system ends up in the singlet state is probabilistic rather than deterministic.

In principle, it should be possible to engineer energetically favorable type of CTC for qubit case

by engineering a corresponding order parameter. The existence of such type of CTC in a quantum

system and potential applications remain to be explored.
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Chapter 3: Tri-axis Sensor States

3.1 Introduction

We introduce the tri-axis sensor states in this chapter with three motivations: Though ideally, every

maximally entangled two-qubit state, including the four Bell states, produces a similar metrological

advantage predicted by quantum Fisher information, they become less sensitive approaching the

probabilities 𝑃 = 0 or 𝑃 = 1. They are most sensitive at 𝑃 = 0.5, where the rate of change is at

the maximum. This motivates us to align this sensitive zone with small-angle rotations. In addition,

the rotation measured by Bell states has sign ambiguity. The previous protocols does not resolve all

|Φ−〉

|Φ+〉

|Φ+〉

|Ψ+〉

|Ψ+〉

radius = 2

|Φ−〉
|Ψ−〉

π

π π

Figure 3.1: Ball of two-qubit maximally entangled states. Each point in a ball of radius 2

represents a two-qubit maximally entangled state. The surface of the ball is assigned to the triplet

states. Specifically, the three pairs of antipodal points—corresponding to the directions ±𝒙̂, ± ̂𝒚,
and ± ̂𝒛—are associated with the Bell states |Φ−⟩, |Φ+⟩, and |Ψ+⟩, respectively. These points are
connected by circular arcs of length 𝜋 on the surface, indicating the mutual orthogonality of the

corresponding states. The singlet state |Ψ−⟩ is located at the center of the ball.
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three components of the rotation, simultaneously. In order to circumvent these three drawbacks, in

this chapter, we propose the tri-axis sensor states. In order to obtain an intuitive understanding of

the states, we investigate the properties of the two-qubit maximally entangled states.

3.2 Two-qubit Maximally Entangled States

We parametrize the two-qubit maximally entangled states by (𝛼, 𝜃, 𝜙). Applying rotation of 𝛼 along

the axis specified by the spherical coordinate 𝜃 and 𝜙 on the first qubit of the singlet state

|Ψ(𝛼, 𝜃, 𝜙)⟩ = [𝑅(𝛼, 𝜃, 𝜙) ⊗ 𝐼] |Ψ−⟩

= 1√
2

[(cos 𝛼
2

− i sin 𝛼
2

cos 𝜃) |01⟩ + i e− i 𝜙 sin 𝛼
2

sin 𝜃 |00⟩

− i e i 𝜙 sin 𝛼
2

sin 𝜃 |11⟩ − (cos 𝛼
2

+ i sin 𝛼
2

cos 𝜃) |10⟩]

= cos 𝛼
2

|Ψ−⟩ − i sin 𝛼
2

cos 𝜃 |Ψ+⟩ + i sin 𝛼
2

sin 𝜃 cos 𝜙 |Φ−⟩ + sin 𝛼
2

sin 𝜃 sin 𝜙 |Φ+⟩

(3.1)

These states are maximally entangled states because any local unitary operation [𝑅(𝛼, 𝜃, 𝜙) ⊗ 𝐼]

is unable to disentangle the singlet state. We examine the above expression by calculating a few

special cases. We start with the trivial case where 𝛼 = 0,

|Ψ(0, 𝜃, 𝜙)⟩ = |Ψ−⟩ , (3.2)

The qubits remain in the singlet state, as expected. Next, we consider the triplet states obtained by a

𝜋-rotation along an arbitrary axis defined by 𝜃 and 𝜙

|Ψ(𝜋, 𝜃, 𝜙)⟩ = − i cos 𝜃 |Ψ+⟩ + i sin 𝜃 cos 𝜙 |Φ−⟩ + sin 𝜃 sin 𝜙 |Φ+⟩ . (3.3)

The result is a 2-dimensional sphere spanned by the three Bell states {−i |Ψ+⟩ , i |Φ−⟩ , |Φ+⟩}.

Moreover, the sphere is parameterized by the usual spherical coordinates (𝜃, 𝜙) after the extra phase

factors are omitted. This fact motivates us to visualize these three triplet states on a sphere. We align

the triplet states with the {𝒙̂, ̂𝒚, ̂𝒛} unit vectors in a usual Cartesian coordinate system, respectively.
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We define this sphere (𝛼 = 𝜋) together with its interior (0 ≤ 𝛼 < 𝜋) the ball of two-qubit maximally

entangled states, or simply the 2QMES ball.

Unlike the Bloch sphere, the 2QMES ball has peculiar properties that we will discuss. We

first calculate the radius of the ball. Recall from the Bloch sphere, orthogonal quantum states are

separated by 𝜋 distance measured from the length of the geodesic. The triplet states are orthogonal

with each other, connected by quarter circles (of 𝜋/2 radian) on the surface. By assuming the quarter

circles are the geodesics, we conclude that the radius of the ball is 𝜋/(𝜋/2) = 2.

The center of the ball is the singlet state, which should be orthogonal with all the triplet states.

However, the Euclidean distance between the center and the surface of the ball is 2 which is less

than 𝜋.

The second peculiarity appears when we consider the pair of antipodal points on the ball. We

calculate

|Ψ(𝜋, 𝜋 − 𝜃, 𝜙 + 𝜋)⟩ = i cos 𝜃 |Ψ+⟩ − i sin 𝜃 cos 𝜙 |Φ−⟩ − sin 𝜃 sin 𝜙 |Φ+⟩ = − |Ψ(𝜋, 𝜃, 𝜙)⟩ .

(3.4)

The antipodal points represents physically identical states except for an extra global 𝜋 phase

difference. Intuitively, this is because single-qubit 𝜋 rotations along axes 𝒏̂ and −𝒏̂ are equivalent

up to a minus sign. and In the next subsection, we explore the peculiarities of the 2QMES ball with

detailed calculations.

3.2.1 Measuring Distance in the 2QMES Ball

Following the same idea for the Bloch sphere

|dΨ⟩

= 1
2

[− sin 𝛼
2

|Ψ−⟩ + cos 𝛼
2

(− i cos 𝜃 |Ψ+⟩ + i sin 𝜃 cos 𝜙 |Φ−⟩ + sin 𝜃 sin 𝜙 |Φ+⟩)] d𝛼

+ sin 𝛼
2

( i sin 𝜃 |Ψ+⟩ + i cos 𝜃 cos 𝜙 |Φ−⟩ + cos 𝜃 sin 𝜙 |Φ+⟩) d𝜃

+ sin 𝛼
2

sin 𝜃 (− i sin 𝜙 |Φ−⟩ + cos 𝜙 |Φ+⟩) d𝜙

(3.5)
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|Φ−〉
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α

2 tan α
4|Ψ−〉

2

2

Figure 3.2: Stereographic projection of the equatorial plane of the 2QMES ball. The distances

labeled here are measured in the usual Euclidean metric of the Cartesian coordinates. The arc in the

upper hemisphere with length 𝛼 is projected to the equatorial plane as a line segment of 2 tan(𝛼/4).
Particularly, when 𝛼 = 𝜋, the length of the projection is 2, which is equal to the radius of the

2QMES ball. The stereographic projection explains why the singlet state appears closer to the

triplet states in the 2QMES ball, though they are separated by geodesic distance of 𝜋. Note that
the antipodal points in the equatorial plane represents the same state. By identifying the pair of

antipodal points here, we conclude that the equatorial plane has the topology of a two-dimensional

real projective plane ℝℙ2.

We calculate

d𝑙2 = 4||dΨ⟩|2 = d𝛼2 + 4 sin2 𝛼
2

d𝜃2 + 4 sin2 𝛼
2

sin2 𝜃 d𝜙2 (3.6)

The geometric phase seemingly vanishes

d𝛾 = i ⟨Ψ|dΨ⟩ = 0. (3.7)

However, this does not imply the space is flat. We will discuss the geometric phase later. Combining
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Figure 3.3: Northern hemisphere map. A similar stereographic projection technique is employed

to create maps of the Earth. In this projection, the north pole is placed at the center while the equator

forms the outer boundary. Due to inherent map distortions, the circles of latitude (represented by

circular dotted lines) are not evenly spaced. On the map, geodesics appear as circular arcs (shown

as solid black lines) connecting pairs of antipodal points (marked by black dots) on the equator.

Although these geodesics share the same length on the sphere, they appear with varying lengths in

the projection.

the above derivation, we obtain

d𝑆2 = d𝑙2 − 4 d𝛾2

= d𝛼2 + 4 sin2 𝛼
2

d𝜃2 + 4 sin2 𝛼
2

sin2 𝜃 d𝜙2

= d𝛼2 + 4 sin2 𝛼
2

(d𝜃2 + sin2 𝜃 d𝜙2) .

(3.8)

Although the (𝜃, 𝜙) part displays spherical symmetry, this metric tells us the space is curved because

it differs from the metric of usual spherical coordinates.

d𝑆2
sphere = d𝑟2 + 𝑟2 (d𝜃2 + sin2 𝜃 d𝜙2) . (3.9)

In order to analyze this, it is sufficient to inspect one cross section, due to the spherical symmetry.

We choose the equatorial plane 𝜃 = 𝜋/2, where

d𝑆2 = d𝛼2 + 4 sin2 𝛼
2

d𝜙2. (3.10)
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Based on our previous analysis Fig. (2.9), this is the metric of the hemisphere of radius 2. This

motivates us to use the stereographic projection to flatten this cross section.

𝑟 = 2 tan 𝛼
4

(3.11)

Another important feature of the 2QMES ball is the states does not include relative phase, which

implies

d𝑠2 = d𝑆2, (3.12)

Measuring from the Bell basis, the classical Fisher information is always equal to the quantum

Fisher information.

3.2.2 Geodesics in the 2QMES Ball

Geodesics in the 2QMES ball are circular arcs connecting a pair of antipodal points. The special

case is the geodesics pass through the center of the ball, namely the singlet state |Ψ⟩−
. In this case

the arc becomes a straight line as the radius of the arc becomes infinite. The length of a geodesic is

always 2𝜋.

The 2QMES ball is topologically a three-dimensional real projective plane ℝℙ3.

3.3 Tri-axis Sensor States

3.3.1 Definition

The tri-axis sensor states are obtained by 2𝜋/3 rotations along certain axes

𝛼𝑆 = 2𝜋
3

, cos 𝛼𝑆
2

= 1
2

, sin 𝛼𝑆
2

=
√

3
2

. (3.13)

For example, the |𝑆+++⟩ state, the axes are specified by 𝜃𝑆, with

cos 𝜃𝑆 = 1√
3

, sin 𝜃𝑆 = √2
3

, tan 𝜃𝑆 =
√

2, (3.14)
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|Φ+〉

|Φ+〉

|Ψ+〉
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|Φ−〉

|Ψ−〉
2π

2π

2π

Figure 3.4: Geodesics in the 2QMES ball. The three solid lines in the graph are examples of

geodesics. Each connects a pair of antipodal points on the sphere, which represent the same quantum

state. Depending on its path, a geodesic appears either as a circular arc or as a straight line when it

passes through the origin (which represents the singlet state |Ψ−⟩). Notably, the three geodesics
chosen for this graph exhibit the same shapes as the three solid lines in Fig. (3.3). Regardless of

their appearance, every geodesic in the 2QMES ball has a length of 2𝜋. Specifically, the geodesics
shown in the graph correspond to the trajectories of quantum states undergoing rotation about the

̂𝒛-axis, with the direction of rotation indicated by the arrow at the midpoint of each trajectory.

and the value for 𝜙

𝜙𝑆 = 𝜋
4

, cos 𝜙𝑆 = sin 𝜙𝑆 = 1√
2

. (3.15)

The other tri-axis sensor states can be obtained with 8 combinations of

|𝑆⟩ = ∣Ψ (2𝜋
3

, 𝜃𝑆 or (𝜋 − 𝜃𝑆), ±𝜋
4
or ± 3𝜋

4
)⟩ . (3.16)

We represent these states in qubit and Bell basis as

|𝑆𝑚𝑥𝑚𝑦𝑚𝑧⟩ = 1
2
√

2
[(1 − i 𝑚𝑧) |01⟩ + ( i 𝑚𝑥 + 𝑚𝑦) |00⟩ − ( i 𝑚𝑥 − 𝑚𝑦) |11⟩ − (1 + i 𝑚𝑧) |10⟩]

= 1
2

(|Ψ−⟩ − i 𝑚𝑧 |Ψ+⟩ + i 𝑚𝑥 |Φ−⟩ + 𝑚𝑦 |Φ+⟩) ,
(3.17)

where 𝑚𝑥, 𝑚𝑦, 𝑚𝑧 are indices taking values from ±1. Geometrically, the indices label the octant

the state is located. For example, the 𝑚𝑥 = +1, 𝑚𝑦 = −1, 𝑚𝑧 = +1 tri-axis sensor state is
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|Φ−〉
|Φ+〉

|Ψ+〉

|S+++〉

Figure 3.5: Tri-axis sensor states. The Bell states are labeled with black ×. The even (odd) tri-axis

sensor states are labeled with orange + (circles). The total eight tri-axis sensor states form a cube

inside of the 2QMES ball. In the stereographic projection, the edge size of the cube is exactly

1/3 of the diameter of the 2QMES ball. The two groups of tri-axis sensor states form two sets of

orthogonal bases, respectively. In other words, the geodesic distance between two tri-axis sensor

states with the same parity is 𝜋. The geodesic distance between an even and an odd tri-axis sensor
state is 2𝜋/3. The geodesic distance between a tri-axis sensor state and a Bell state is also 2𝜋/3.

denoted as |𝑆+−+⟩, in the 𝑥 > 0, 𝑦 < 0, 𝑧 > 0 octant.

𝑚𝑥, 𝑚𝑦, 𝑚𝑧 transforms when applied these of the three mirror reflection operators along each

axis in the 2QMES ball. For example

𝑀𝑥 |𝑆+−+⟩ = |𝑆−−+⟩ (3.18)

𝑀𝑥 = |01⟩⟨01| + |10⟩⟨10| + |11⟩⟨00| + |00⟩⟨11|

𝑀𝑦 = |01⟩⟨01| + |10⟩⟨10| − |11⟩⟨00| − |00⟩⟨11|

𝑀𝑧 = − |10⟩⟨01| − |01⟩⟨10| + |00⟩⟨00| + |11⟩⟨11|

(3.19)
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They could be alternatively represented in the Bell basis

𝑀𝑥 = |Ψ−⟩⟨Ψ−| + |Ψ+⟩⟨Ψ+| − |Φ−⟩⟨Φ−| + |Φ+⟩⟨Φ+|

𝑀𝑦 = |Ψ−⟩⟨Ψ−| + |Ψ+⟩⟨Ψ+| + |Φ−⟩⟨Φ−| − |Φ+⟩⟨Φ+|

𝑀𝑧 = |Ψ−⟩⟨Ψ−| − |Ψ+⟩⟨Ψ+| + |Φ−⟩⟨Φ−| + |Φ+⟩⟨Φ+|

(3.20)

We also introduce the product of the three indices

𝑚 = 𝑚𝑥𝑚𝑦𝑚𝑧, (3.21)

which also takes value from ±1. Even number of mirror reflections keep 𝑚 unchanged, while

odd number of mirror reflections flip the sign of 𝑚. In this sense, we also call 𝑚 the parity of the

tri-axis sensor state. The tri-axis sensor states with the same parity form an orthonormal basis for

the two-qubit states.

3.3.2 State Preparation

There is likely a family of them. For example, this one is constructed by applying a -120 degree

rotation along the diagonal
1√
3

( ̂𝑥 + ̂𝑦 + ̂𝑧) axis after preparing |Φ+⟩

|𝑆′⟩ = 1
2

(|Φ+⟩ + i |Φ−⟩ + i |Ψ+⟩ + |Ψ−⟩)

= 1
2
√

2
[(1 + i ) |00⟩ + (1 + i ) |01⟩ + ( i − 1) |10⟩ + (1 − i ) |11⟩]

(3.22)

Since the entangled state prepared by our parametric drive is naturally closest to |Ψ+⟩, we can

use this one

|𝑆⟩ = 1
2

[i |Φ+⟩ + |Φ−⟩ − |Ψ+⟩ + i |Ψ−⟩]

= 1
2
√

2
[(1 + i ) |00⟩ + ( i − 1) |01⟩ − ( i + 1) |10⟩ + ( i − 1) |11⟩] ,

(3.23)

which is constructed by applying a 120-degree rotation along the diagonal 1√
3

( ̂𝑥 + ̂𝑦 + ̂𝑧) axis

Along an arbitrary axis, the quantum Fisher information is 1 due to symmetry.
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3.3.3 Classical Fisher Information

For 𝑥-rotations

𝑈(𝜃𝑥, 0, 0) = ⎛⎜⎜
⎝

cos 𝛼𝑥/2 − i sin 𝛼𝑥/2

− i sin 𝛼𝑥/2 cos 𝛼𝑥/2
⎞⎟⎟
⎠

. (3.24)

The probabilities for the Bell basis measurements

𝑃(𝜃𝑥, Φ+) = 1
4

(1 + sin 𝜃𝑥), (3.25)

𝑃(𝜃𝑥, Φ−) = 1
4

(1 − sin 𝜃𝑥), (3.26)

𝑃(𝜃𝑥, Ψ+) = 1
4

(1 − sin 𝜃𝑥), (3.27)

𝑃(𝜃𝑥, Ψ−) = 1
4

(1 + sin 𝜃𝑥). (3.28)

Although, for each of the single outcomes, the modulation of the probability is only half of the

amplitude compared with the single-qubit case. But considering the contributions from all of them,

the total classical fisher information

𝐹 =
[𝜕𝜃𝑥

𝑃(𝜃𝑥, Φ+)]2

𝑃(𝜃𝑥, Φ+)
+

[𝜕𝜃𝑥
𝑃(𝜃𝑥, Φ−)]2

𝑃(𝜃𝑥, Φ−)
+

[𝜕𝜃𝑥
𝑃(𝜃𝑥, Ψ+)]2

𝑃(𝜃𝑥, Ψ+)
+

[𝜕𝜃𝑥
𝑃(𝜃𝑥, Ψ−)]2

𝑃(𝜃𝑥, Ψ−)

= 1,
(3.29)

Similarly, for 𝑦-rotations

𝑈(0, 𝜃𝑦, 0) = ⎛⎜⎜
⎝

cos 𝜃𝑦/2 − sin 𝜃𝑦/2

sin 𝜃𝑦/2 cos 𝜃𝑦/2
⎞⎟⎟
⎠

. (3.30)

The probabilities for the Bell basis measurements

𝑃(𝜃𝑦, Φ+) = 1
4

(1 + sin 𝜃𝑦), (3.31)

𝑃(𝜃𝑦, Φ−) = 1
4

(1 + sin 𝜃𝑦), (3.32)

𝑃(𝜃𝑦, Ψ+) = 1
4

(1 − sin 𝜃𝑦), (3.33)

𝑃(𝜃𝑦, Ψ−) = 1
4

(1 − sin 𝜃𝑦). (3.34)
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Easy to check

𝐹 = 1. (3.35)

for 𝑧-rotations

𝑈(0, 0, 𝜃𝑧) = ⎛⎜⎜
⎝

𝑒− i 𝜃𝑧/2 0

0 𝑒 i 𝜃𝑧/2

⎞⎟⎟
⎠

. (3.36)

The probabilities for the Bell basis measurements

𝑃(𝜃𝑧, Φ+) = 1
4

(1 − sin 𝜃𝑧), (3.37)

𝑃(𝜃𝑧, Φ−) = 1
4

(1 + sin 𝜃𝑧), (3.38)

𝑃(𝜃𝑧, Ψ+) = 1
4

(1 − sin 𝜃𝑧), (3.39)

𝑃(𝜃𝑧, Ψ−) = 1
4

(1 + sin 𝜃𝑧). (3.40)

Easy to check

𝐹 = 1. (3.41)

3.3.4 Quantum Fisher Information Matrix

We consider measuring the three components of a rotation simultaneously. We use slightly different

parameterizations for convenience.

𝑈(𝛼𝑥, 𝛼𝑦, 𝛼𝑧) = 𝑒− i 𝝈⋅𝜶/2 = 𝐼 cos 𝛼
2

− i 𝝈 ⋅ 𝜶
2

sin 𝛼
2

, (3.42)

where the rotation angle is a vector

𝜶 = (𝛼𝑥, 𝛼𝑦, 𝛼𝑧). (3.43)

The magnitude of 𝜶 is the rotation angle

𝛼 = |𝜶| = √𝛼2
𝑥 + 𝛼2

𝑦 + 𝛼2
𝑧. (3.44)
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The coordinate transformation

𝛼𝑥 = 𝛼 sin 𝜃 cos 𝜙,

𝛼𝑦 = 𝛼 sin 𝜃 sin 𝜙,

𝛼𝑧 = 𝛼 cos 𝜃.

(3.45)

The differentials

⎛⎜⎜⎜⎜⎜⎜
⎝

d𝛼𝑥

d𝛼𝑦

d𝛼𝑧

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

sin 𝜃 cos 𝜙 𝛼 cos 𝜃 cos 𝜙 −𝛼 sin 𝜃 sin 𝜙

sin 𝜃 sin 𝜙 𝛼 cos 𝜃 sin 𝜙 𝛼 sin 𝜃 cos 𝜙

cos 𝜃 −𝛼 sin 𝜃 0

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

d𝛼

d𝜃

d𝜙

⎞⎟⎟⎟⎟⎟⎟
⎠

. (3.46)

The inverse relations

⎛⎜⎜⎜⎜⎜⎜
⎝

d𝛼

d𝜃

d𝜙

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

sin 𝜃 cos 𝜙 sin 𝜃 sin 𝜙 cos 𝜃
1
𝛼

cos 𝜃 cos 𝜙 1
𝛼

cos 𝜃 cos 𝜙 − 1
𝛼

sin 𝜃 cos 𝜙

− sin 𝜙
𝛼 sin 𝜃

cos 𝜙
𝛼 sin 𝜃

0

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

d𝛼𝑥

d𝛼𝑦

d𝛼𝑧

⎞⎟⎟⎟⎟⎟⎟
⎠

. (3.47)

Due to spherical symmetry, we could choose an arbitrary direction. We choose a point along

the 𝒙̂-axis 𝜃 = 𝜋/2, 𝜙 = 0, which generates

⎛⎜⎜⎜⎜⎜⎜
⎝

d𝛼

d𝜃

d𝜙

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 0

0 0 − 1
𝛼

0 1
𝛼

0

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

d𝛼𝑥

d𝛼𝑦

d𝛼𝑧

⎞⎟⎟⎟⎟⎟⎟
⎠

. (3.48)

The metric is

𝑑𝑆2 = d𝛼2 + 4 sin2 𝛼
2

(d𝜃2 + sin2 𝜃 d𝜙2)

= ℱ𝑥𝑥d𝛼2
𝑥 + ℱ𝑦𝑦d𝛼2

𝑦 + ℱ𝑧𝑧d𝛼2
𝑧,

(3.49)

with the coefficients are the entries of the quantum Fisher information matrix [58, 59]

ℱ𝑥𝑥 = 1

ℱ𝑦𝑦 = ℱ𝑧𝑧 = sinc2 𝛼
2

(3.50)

where

sinc 𝑥 = sin 𝑥
𝑥

. (3.51)
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Figure 3.6: Quantum Fisher information matrix for tri-axis sensor states. The horizontal

axis is the amount of the rotation along the 𝒙̂-axis. The blue solid line shows the quantum Fisher

information along the same axis, which is constantly 1. The red dashed line shows the quantum
Fisher information along the other two axes, which decreases as the amount of rotation along the

𝒙̂-axis increases.

The diagonal components of the quantum Fisher information matrix are shown in Fig. (3.6). We

conclude that in the small angle limit, the sensor is equally sensitive to three components. The three

components can be estimated simultaneously. Once one of the components gets large (𝛼 > 𝜋/2),

the tri-axis sensor becomes saturated, in which case the sensitivity regarding the remaining two

components decreases. In the deep saturation limit (𝛼 ≫ 2𝜋), the sensor becomes effectively a

single-axis sensor. But this single-axis sensor still has the agnostic feature - no prior knowledge

about the rotation axis is needed for estimating the amount of the rotation.
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Chapter 4: Positronium Sensing

4.1 Introduction

So far, our discussion has been focusing on the probe-ancilla paradigm. Imagine a system with both

the qubits interacting with the unknown rotation, Is there a way we could gain an advantage? Let’s

briefly revisit the rotational invariance of the singlet states.

(𝑈 ⊗ 𝑈†) |Ψ−⟩ = (det 𝑈) (𝑈2 ⊗ 𝐼) |Ψ−⟩ . (4.1)

Because the rotation is doubled, the Fisher information is boosted to 4.

t

Magnetic
Field

Figure 4.1: Positronium sensing. A pair of electron and positron are generated in the para-

positronium state. Negelecting the orbital part, it is the singlet state. They interact with an unknown

magnetic field. From the rotation of the two spins, one could extract information about the magnetic

field.
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|Ψ−⟩

𝑈 𝑈†
= (det 𝑈)−1

|Ψ−⟩

𝑈

𝑈

𝑈

𝑈†

= (det 𝑈)−1

|Ψ−⟩

𝑈2

Figure 4.2: Rotation doubling on singlet state. Applying a unitary operation and the corresponding

Hermitian conjugation on both of the qubits in a singlet state is equivalent to applying the unitary

operation twice on one of the qubits (up to a global phase).

For the first part: in chapter one, we mentioned the charge conjugation symmetry for a super-

conductor. In this section, we utilize the charge conjugation in the context of a lumped element

superconducting transmon qubit, which provide us with a natural platform to synthesize the analogue

of a natural positron. For the second part, we employ the combination of quantum gates and AC

Stark effect.

Such model exist in the nature, which is the positronium. Is there a way to implement the

analogue of the positronium in the superconducting qubit? The task of implementing this analogue

can be decomposed into two objects:

• Define the positronium state.

• Applying the correct interaction.

4.2 Lagrangian and Hamiltonian Formulism of a Transmon

Circuit

The Lagrangian of the transmon circuit [60, 61] is written as

𝐿 = 1
2

𝐶(𝑉1 − 𝑉2)2 + 𝐸𝐽 cos(𝜃1 − 𝜃2) (4.2)
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where 𝑉𝑖 represents the electric potential of the two nodes, and 𝐸𝐽 is the Josephson energy stored

in the Josephson junction. An ideal lumped-element capacitor features the quasi-equilibrium of

electric potential and chemical potential 1

0 = −2𝑒𝑉𝑖 + 𝜇𝑖 = −2𝑒𝑉𝑖 − ℏ𝜕𝑡𝜃𝑖, (4.3)

and

𝐿 = ℏ2𝐶
8𝑒2 (𝜕𝑡𝜃1 − 𝜕𝑡𝜃2)2 + 𝐸𝐽 cos(𝜃1 − 𝜃2)

= ℏ2

16𝐸𝐶
(𝜕𝑡𝜃)2 + 𝐸𝐽 cos 𝜃

(4.4)

where 𝜃 = 𝜃1 − 𝜃2 is the phase difference across the junction and 𝐸𝐶 = 𝑒2/2𝐶 is the charge energy.

The Lagrangian exhibits the electron-hole symmetry inherent from the superconductor physics

discussed in chapter 1,

𝜃 → −𝜃, 𝐿 → 𝐿. (4.5)

The conjugate momentum,

𝜕𝐿
𝜕(𝜕𝑡𝜃)

= ℏ2

8𝐸𝐶
𝜕𝑡𝜃 = −ℏ𝑛, (4.6)

has the meaning of number of Cooper pairs tunneled through the junction. Performing Legendre

transform

𝐻 = 𝜕𝐿
𝜕(𝜕𝑡𝜃)

𝜕𝑡𝜃 − 𝐿 = 4𝐸𝐶𝑛2 − 𝐸𝐽 cos 𝜃, (4.7)

The Hamilonian also has the electron-hole symmetry inherent from the Lagrangian

𝜃 → −𝜃, 𝑛 → −𝑛, 𝐻 → 𝐻. (4.8)

The transformation above is also refered to as the charge conjugation.

The Lagrangian of the transmon circuit coupled to a voltage drive can be described by

𝐿 = 1
2

𝐶𝑉 2 + 𝐸𝐽 cos 𝜃 + 1
2

𝐶𝑔 [𝑉 − 𝑉𝑑(𝑡)]2

= ℏ2

8𝑒2 𝐶(𝜕𝑡𝜃)2 + 𝐸𝐽 cos 𝜃 + 1
2

𝐶𝑔 [ ℏ
2𝑒

𝜕𝑡𝜃 + 𝑉𝑑(𝑡)]
2 (4.9)

1This equation can be derived from Eq. (1.36) by neglecting the acceleration process of the Cooper pairs.
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The Hamiltonian of the transmon circuit coupled to a voltage drive can be described by

𝐻 = 4𝐸𝐶𝑛2 − 𝐸𝐽 cos 𝜃 + 1
2

𝐶𝑔 ( ℏ
2𝑒

𝜕𝑡𝜃 + 𝑉𝑑(𝑡))
2

≃ 4𝐸𝐶𝑛2 − 𝐸𝐽 cos 𝜃 −
2𝑒𝐶𝑔

𝐶
𝑛𝑉𝑑(𝑡)

(4.10)

where

𝐸𝐶 = 𝑒2

2(𝐶 + 𝐶𝑔)
, (4.11)

is understood as the total charge energy. We conclude that by changing the sign of 𝜃 and 𝑛, the sign

of the coupling term is also reversed.

Under the charge conjugation, the lowest energy levels of a superconducting transmon circuit

transform as

|𝑔⟩ → |𝑔⟩ , |𝑒⟩ → − |𝑒⟩ , |𝑓⟩ → |𝑓⟩ , |ℎ⟩ → − |ℎ⟩ , … . (4.12)

In the computational space spanned by the lowest two eigenstates, the above charge conjugation is

simply 𝜋-rotation along the ̂𝒛-axis. To sum up, 𝜋-rotation along the ̂𝒛-axis on a superconducting

transmon qubit is equivalent to transforming an electron to a positron. However, the anti-transmon

state prepared in this way doesn’t yet allow us to reverse the rotation along the ̂𝒛-axis. In order to

tackle this problem, we introduce a simultaneous AC Stark shift tone on both of the qubits.

4.3 AC Stark Shift

The transmon Hamiltonian with the lowest three energy levels can be written as

𝐻/ℏ = 𝜔𝑔
𝑞 |𝑔⟩⟨𝑔| + 𝜔𝑒

𝑞 |𝑒⟩⟨𝑒| + 𝜔𝑓
𝑞 |𝑓⟩⟨𝑓| . (4.13)

We couple the system with an external off-resonance microwave drive with frequency 𝜔𝑠. The total

Hamiltonian under rotating wave approximation is written as

𝐻/ℏ = 𝜔𝑔
𝑞 |𝑔⟩⟨𝑔| + 𝜔𝑒

𝑞 |𝑒⟩⟨𝑒| + 𝜔𝑓
𝑞 |𝑓⟩⟨𝑓|

+𝜔𝑠𝑎†
𝑠𝑎𝑠 + (𝑔𝑔𝑒

𝑞𝑠 |𝑒⟩⟨𝑔| 𝑎𝑠 + H.c.) + (𝑔𝑒𝑓
𝑞𝑠 |𝑓⟩⟨𝑒| 𝑎𝑠 + H.c.) ,

(4.14)
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where “H.c.” represents the Hermitian conjugation of the prior term. The eigenstates of the coupled

Hamiltonian are called the the dressed states. Similar to the dispersive coupling, to analyze the

energy of these states, it suffices to investigate the following 3-by-3 matrix blocks

𝐻/ℏ =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝜔𝑔
𝑞 + (𝑛 + 1)𝜔𝑠 𝑔𝑔𝑒

𝑞𝑠
√

𝑛 + 1 0

𝑔𝑔𝑒∗
𝑞𝑠

√
𝑛 + 1 𝜔𝑒

𝑞 + 𝑛𝜔𝑠 𝑔𝑒𝑓
𝑞𝑠

√
𝑛

0 𝑔𝑒𝑓∗
𝑞𝑠

√
𝑛 𝜔𝑓

𝑞 + (𝑛 − 1)𝜔𝑠

⎞⎟⎟⎟⎟⎟⎟
⎠

. (4.15)

We introduce the Rabi frequencies when in resonance

Ω𝑔𝑒
𝑠 = 2|𝑔𝑔𝑒

𝑞𝑠 |
√

𝑛 + 1, Ω𝑒𝑓
𝑠 = 2∣𝑔𝑒𝑓

𝑞𝑠 ∣
√

𝑛 + 1. (4.16)

The Rabi frequency is proportional to the square root of photon number plus one [62].

The perturbation vanishes in the first order. We apply the second-order perturbation theory.

The shift in the qubit frequency is dependent on the number of photons in the 𝜔𝑠 mode,

Δ𝜔𝑔,𝑛+1
𝑞𝑠 = | ⟨𝑒, 𝑛|𝐻𝑠|𝑔, 𝑛 + 1⟩|2

𝜔𝑔
𝑞 − 𝜔𝑒

𝑞 + 𝜔𝑠
= −|𝑔𝑔𝑒

𝑞𝑠 |2(𝑛 + 1)
𝜔𝑔𝑒 − 𝜔𝑠

(4.17)

Δ𝜔𝑒,𝑛
𝑞𝑠 = | ⟨𝑔, 𝑛 + 1|𝐻𝑠|𝑒, 𝑛⟩|2

𝜔𝑒
𝑞 − 𝜔𝑔

𝑞 − 𝜔𝑠
+ | ⟨𝑓, 𝑛 − 1|𝐻𝑠|𝑒, 𝑛⟩|2

𝜔𝑒
𝑞 − 𝜔𝑓

𝑞 + 𝜔𝑠

= |𝑔𝑔𝑒
𝑞𝑠 |2(𝑛 + 1)
𝜔𝑔𝑒 − 𝜔𝑠

−
∣𝑔𝑒𝑓

𝑞𝑠 ∣
2
𝑛

𝜔𝑒𝑓 − 𝜔𝑠
.

(4.18)

We study the qubit transition frequency where the number of photons is unchanged

Δ𝜔𝑔𝑒
𝑞 = Δ𝜔𝑒,𝑛+1

𝑞𝑠 − Δ𝜔𝑔,𝑛+1
𝑞𝑠

= |𝑔𝑔𝑒
𝑞𝑠 |2(2𝑛 + 3)
𝜔𝑔𝑒 − 𝜔𝑠

−
∣𝑔𝑒𝑓

𝑞𝑠 ∣
2
(𝑛 + 1)

𝜔𝑒𝑓 − 𝜔𝑠

(4.19)

We assume the AC stark tone has large amount of photons, in which case 𝑛 ≫ 1, we can approximate

Δ𝜔𝑔𝑒
𝑞 ≃ |𝑔𝑔𝑒

𝑞𝑠 |2(2𝑛 + 2)
𝜔𝑔𝑒 − 𝜔𝑠

−
∣𝑔𝑒𝑓

𝑞𝑠 ∣
2
(𝑛 + 1)

𝜔𝑒𝑓 − 𝜔𝑠

= (Ω𝑔𝑒
𝑠 )2

2(𝜔𝑔𝑒 − 𝜔𝑠)
− (Ω𝑒𝑓

𝑠 )2

4(𝜔𝑒𝑓 − 𝜔𝑠)
,

(4.20)
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Since Rabi frequency is also approximately proportional to the square root of the excitation number

plus one for an anharmonic oscillator, we could use

Ω𝑒𝑓
𝑠 =

√
2Ω𝑔𝑒

𝑠 (4.21)

To obtain the approximate formula [63]

Δ𝜔𝑔𝑒 ≃ (Ω𝑔𝑒
𝑠 )2

2
( 1

𝜔𝑔𝑒 − 𝜔𝑠
− 1

𝜔𝑒𝑓 − 𝜔𝑠
) (4.22)

Near resonance, the above perturbation result breaks down, but the influence of the AC Stark

effect generally exists. The qubit frequency under Rabi drive or gate operations is generally different

from the original qubit frequency determined by the Ramsey measurement. The amount of the

deviation is usually on the order of a few hundred kHz. This becomes one of the sources of the

phase errors. We will come back to this problem later.

For our experiment, we select a special frequency for the AC Stark tone which is able to induce

exactly an equal amount of frequency shift in opposite directions on the two transmon qubits. This

technique is used to implement opposite rotations along the 𝒛-axis for the two qubits. Combining the

AC Stark shift part with the 𝜋-rotation along the 𝒛-axis, we implement the analogue of positronium

coupled to an external vector magnetic field. By utilizing this coupling involving two transmon

qubits, we achieved improved Fisher information value predicted by Eq. (4.1).
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Chapter 5: Experimental Setup

5.1 Device

The device is superconducting aluminum-based. The probe qubit is a fixed-frequency qubit, coupled

to a drive line and a readout cavity. The ancilla qubit is a flux-tunable qubit, coupled to a fast flux

line in addition to a drive line and a readout cavity. Both of the qubits are coupled through a bus

resonator. Physically, the two qubits correspond to two of the three qubits on the chip.

X X X

ProbeAncilla

Drive lineFFL line

Figure 5.1: Schematic of the device.
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(a) (b)

Figure 5.2: (a) The chip design layout. (b) Microscopic image of the chip.

5.2 Setup

We utilize superconducting qubits for the experimental research. The parameters are included in the

table Tab. (5.1). The low-noise amplification is assisted by a traveling-wave parametric amplifier

based on the SNAIL (Superconducting Nonlinear Asymmetric Inductive eLements) architecture

[64].

𝜔q/2𝜋 (GHz) |𝛼|/2𝜋 (MHz) 𝜒qc/2𝜋 (kHz) 𝜔c/2𝜋 (GHz) 𝜅/2𝜋 (kHz) 𝑇1 (𝜇s) 𝑇 ∗
2 (𝜇s)

Ancilla 4.2 212 230 6.94 270 32 41

Probe 4.65 180 250 7.09 206 31 39

Table 5.1: Measured parameters of the device used in the experiment.
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Figure 5.3

RF

I

LO
Q

𝑉RF, (𝜔LO + 𝜔IF)

𝐼IF, 𝜔IF

𝑉LO, 𝜔LO

𝑄IF, 𝜔IF

Figure 5.4: IQ mixer for up-conversion.

5.3 Mixer Calibrations

This section focuses on using IQ mixer for frequency up-conversion [65]. The output from RF port

can be modeled as

𝑉RF(𝑡) = 𝐾I𝐼IF(𝑡)𝑉LO(𝑡) − 𝐾QQ̃(𝑡)𝑉 ′
LO(𝑡) + 𝐺LO𝑉LO(𝑡), (5.1)

where 𝑉LO,90(𝑡) represents 𝑉LO(𝑡) with ideally an 90° phase shift, 𝑉LO,leak(𝑡) represents the 𝐿𝑂

leakage into 𝑉RF. We focus on the case where the signals are approximated by monochromatic
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sinusoidal microwaves, in which case we can write down

𝑉LO(𝑡) = 𝐴LO cos(𝜔LO𝑡),

𝑉LO,90(𝑡) = 𝐴LO sin(𝜔LO𝑡 + 𝜙LO,90),

𝑉LO,leak(𝑡) = 𝐴LO cos(𝜔LO𝑡 + 𝜙LO,leak)

(5.2)

where in general, 𝜙LO,90 = 𝜙LO,90(𝜔LO) ≠ 0 for a realistic IQ mixer, which characterizes the

non-orthogonality of the 𝐼, 𝑄 components. We also expect 𝐾I ≠ 𝐾Q which characterizes the

imbalance of the two components. The non-orthogonality and imbalance cause the image frequency.

Non-zero 𝐺LO characterizes the LO leakage.

The formula for the microwave signal generated by the arbitrary wave generator can be expressed

as

⎛⎜⎜
⎝

𝐼IF

𝑄IF

⎞⎟⎟
⎠

= ⎛⎜⎜
⎝

𝐶00 𝐶01

𝐶10 𝐶11

⎞⎟⎟
⎠

⎛⎜⎜
⎝

cos(𝜔IF𝑡 + 𝜙𝐹)

sin(𝜔IF𝑡 + 𝜙𝐹)
⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝐴00 𝐴01

𝐴10 𝐴11

⎞⎟⎟
⎠

⎛⎜⎜
⎝

𝐼mod

𝑄mod

⎞⎟⎟
⎠

+ ⎛⎜⎜
⎝

𝐼DC

𝑄DC

⎞⎟⎟
⎠

, (5.3)

where 𝐼mod(𝑡) and 𝑄mod(𝑡) could be undstood as the envelop of the pulse waveform. The amplitude

transformmatrix𝐴 is for adjusting the amplitude and phase of the pulse. By choosing the appropriate

mixer correction 𝐶 matrix and DC components, we are able to cancel out both the LO leakage

and the image frequency. To simplify the problem, we assume the amplitude transform matrix

takes the simple form of an identity matrix, and the pulse only involves in-phase component

𝐼(𝑡) = 𝐴mod(𝑡), 𝑄(𝑡) = 0. The above formula simplifies to

⎛⎜⎜
⎝

𝐼IF

𝑄IF

⎞⎟⎟
⎠

= ⎛⎜⎜
⎝

1 0

𝐺 sin 𝜃 𝐺 cos 𝜃
⎞⎟⎟
⎠

⎛⎜⎜
⎝

cos(𝜔IF𝑡)

sin(𝜔IF𝑡)
⎞⎟⎟
⎠

𝐴mod + ⎛⎜⎜
⎝

𝐼DC

𝑄DC

⎞⎟⎟
⎠

, (5.4)
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Substitute Eq. (5.4) into Eq. (5.1), we obtain

𝑉RF

= 𝐾I𝐴LO [𝐴mod cos(𝜔IF𝑡) + 𝐼DC] cos(𝜔LO𝑡)

− 𝐾Q𝐴LO [𝐺𝐴mod sin(𝜔IF𝑡 + 𝜃) + 𝑄DC] sin(𝜔LO𝑡 + 𝜙LO,90)

+ 𝐺LO𝐴LO cos(𝜔LO𝑡 + 𝜙LO,leak)

=1
2

𝐾I𝐴LO𝐴mod {cos[(𝜔LO + 𝜔IF)𝑡] + cos[(𝜔LO − 𝜔IF)𝑡]}

+ 1
2

𝐾Q𝐺𝐴LO𝐴mod {cos[(𝜔LO + 𝜔IF)𝑡 + 𝜙LO,90 + 𝜃] − cos[(𝜔LO − 𝜔IF)𝑡 + 𝜙LO,90 − 𝜃]}

+ 𝐴LO [𝐺LO cos(𝜔LO𝑡 + 𝜙LO,leak) + 𝐾I𝐼DC cos(𝜔LO𝑡) + 𝐾Q𝑄DC sin(𝜔LO𝑡 + 𝜙LO,90)]
(5.5)

To verify the set of parameters is able to simultaneously cancel the image frequency and LO

leakage, we apply

𝐺 = 𝐾I
𝐾Q

,

𝜃 = 𝜙LO,90,

𝐼DC = −𝐺LO
𝐾I

(cos 𝜙LO,leak + tan 𝜙LO,90) ,

𝑄DC =
𝐺LO sin 𝜙LO,leak

𝐾Q cos 𝜙LO,90
.

(5.6)

With these values

𝑉RF = 𝐴RF cos [(𝜔LO + 𝜔IF)𝑡 − 𝜙LO,90] , (5.7)

where

𝐴RF = 𝐴LO𝐴mod𝐾I cos 𝜙LO,90. (5.8)

We automatically optimize these parameters with optimizers from Nevergrad [66].

5.4 Heterodyne Readout

In the readout process, the mixer is used in the opposite way.
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Figure 5.5: IQ mixer for downconversion.

Unlike homodyne measurements, hetrodyne measurement operates at non-zero IF frequency

which makes it more robust against low-frequency fluctuations in the setup. The essence of

Heterodyne measruement is the phase throughout the demodulation branch has to be consistent with

the readout pulse from the upconversion mixer. For homodyne measurements, this is could be done

by using the same microwave generator, and use a microwave splitter to allocate the power into

both of the LO ports of the input and readout mixers. For Heterodyne readout, the same technique is

employed. In addition, the phase of the readout pulse and the integration weights have to be either

fixed or consistently accumulating. Once setup, the readout record from hetrodyne measurement is

processed similarly to the method used in homodyne measurement.

Traditionally, the readout record is integrated over time to produce a pair of 𝐼 and 𝑄 values,

which is used to distinguish the quantum state of the qubit. To improve over this paradigm, we

could explore more details about the readout record.

5.5 Integration Weights

The readout record signal from the mixers is not featureless. It is structured with certain self-

correlation. This can be visualized by ploting the covariance matrix of the readout record. The

covariance matrix has non-zero off-diagnonal components, displaying correlated feature.

A customized integration weight is able to efficiently extract the information from the record by
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(a)

Figure 5.6: Readout optimization.

projecting it into the correct basis. In order to determine the integration weights, the algorithms we

have tested are principle component analysis and linear discriminator analysis.

After the integration weights are determined, we prepare a dataset. Half of the data is used as

the training set to feed into an opensource classifier. Two options tested to be exellent for two or

three qubits are Random Forest and Histogram Gradient Boosting from scikit-learn [67–71]. The

remaining half is used as the test set used to obtain the response matrix 𝑅.

5.6 Active Reset

After the readout of the qubits is calibrated, we could utilize the readout to perform more efficient

qubit state reset in a feedback protocol. With properly setting up the active reset, the initial state

fidelity should be better than the thermal equilibrium. Especially, through tuning the threshold,

given the readout is sufficiently stable, such advantage is observed without extremely high readout

fidelity (> 99%).
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5.7 Readout Corrections

The readout fidelity is represented by the response matrix R. The entries of R is defined as the

conditional probability

𝑅𝑖𝑗 = 𝑃(measure 𝑖|truth is 𝑗). (5.9)

We apply a method known as Iterative Beyesian Update (IBU) [72]. The response matrix is

calibrated for the readout classifiers. The corrected probability distribution 𝑡𝑛+1
𝑖 is calculated from

the iteration

𝑡𝑛+1
𝑖 = ∑

𝑗
𝑃(truth is 𝑖|measure 𝑗) × 𝑚𝑗

= ∑
𝑗

𝑅𝑗𝑖𝑡𝑛
𝑖

∑𝑘 𝑅𝑗𝑘𝑡𝑛
𝑘

× 𝑚𝑗,
(5.10)

where 𝑚𝑗 is the measured raw probability distribution without correction. The initial value 𝑡0
𝑖 could

be chosen as the uniform distribution. The iteration usually converges within 20 steps.

The key benefits of IBU are twofold. First, unlike direct matrix inversion, it gracefully handles

unphysical probability estimates (i.e. cases where 𝑃 > 1 or 𝑃 < 0). Second, since it is inherently

iterative, IBU can be implemented on FPGA-based hardware without reliance on full-fledged linear

algebra libraries.

5.8 Spectral Filtering for Pulses

We define the cosine pulse in the discrete form

𝑢(𝑛) = 1 − cos (2𝑛 + 1)𝜋
𝑁

, 0 ≤ 𝑛 ≤ 𝑁 − 1, (5.11)
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Figure 5.7: Cosine pulse and the derivative. (a) The pulse waveforms 𝑢 and 𝑣 in the time domain.

Each waveform consists of 9 data points, sampled at 1GHz sampling rate. (b) The Fourier transforms

of the pulse waveforms. The spectrum of 𝑢 and 𝑣 share the same set of zeros except for the origin

and the boundary. The zeros are displayed as dips in the logarithmic scale. The unit of the vertical

axis is voltage times nanosecond, the same as magnetic flux.

where 𝑁 is the length of the pulse, and the pulse is defined to be zero when 𝑛 is beyond the given

range. The Fourier transform is

𝑢(𝜔) = 𝜏
𝑁−1
∑
𝑛=0

𝑢(𝑛)e− j (2𝑛−𝑁+1)𝜔𝜏/2,

= 𝜏
2

𝑁−1
∑
𝑛=0

(2 − e j (2𝑛+1)𝜋/𝑁 − e− j (2𝑛+1)𝜋/𝑁) e− j (2𝑛−𝑁+1)𝜔𝜏/2

=
𝜏 sin2 𝜋

2𝑁
sin 𝑁𝜔𝜏

2
(1 + 2 cos 𝜋

𝑁
+ cos 𝜔𝜏)

sin 𝜔𝜏
2

sin ( 𝜋
𝑁

+ 𝜔𝜏
2

) sin ( 𝜋
𝑁

− 𝜔𝜏
2

) ,

(5.12)

where j is the imaginary unit1 and 𝜏 is the sampling interval, usually taken to be 1 nanosecond

for a typical arbitrary wave generator. Physically, the real and imaginary part of the waveform

correspond to the in-phase and quadrature components of the signal, respectively. For convenience,

we have aligned the timing of the Fourier transform with the center of the time index.

We define a second function that is proportional to the time derivative of the cosine pulse

𝑣(𝑛) = 2 j sin (2𝑛 + 1)𝜋
𝑁

, 0 ≤ 𝑛 ≤ 𝑁 − 1 (5.13)

1We distinguish between i and j because the imaginary unit is often defined differently depending on the context.

For example, in quantum mechanics the time evolution is conventionally denoted as 𝑒− i 𝜔𝑡, while in engineering the

similar expression is typically denoted as 𝑒 j 𝜔𝑡.
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Figure 5.8: Spectrally filtered pulse. (a) The real and imaginay part of the spectrally filtered pulse

𝑤. The pulse is obtained as the linear combination of 𝑢 and 𝑣 through Eq. (5.16) with parameters

𝜃 = −0.1310𝜋 and 𝜔0 = −0.1035𝜋. These parameters are obtained with numerical optimization.

(b) The Fourier transform of 𝑤. The frequency component at the transmon anharmonicity 𝛼 = −180
MHz is suppressed, as indicated by the red dashed line.

With the Fourier transform

𝑣(𝜔) = 𝜏
𝑁−1
∑
𝑛=0

𝑣(𝑛)e− j (2𝑛−𝑁+1)𝜔𝜏/2,

= 𝜏
𝑁−1
∑
𝑛=0

(e j (2𝑛+1)𝜋/𝑁 − e− j (2𝑛+1)𝜋/𝑁) e− j (2𝑛−𝑁+1)𝜔𝜏/2

= −
2𝜏 sin 𝜋

𝑁
cos 𝜔𝜏

2
sin 𝑁𝜔𝜏

2
sin ( 𝜋

𝑁
+ 𝜔𝜏

2
) sin ( 𝜋

𝑁
− 𝜔𝜏

2
)

(5.14)

We could verify their ratio

𝑣(𝜔)
𝑢(𝜔)

= − 2 sin 𝜔𝜏

tan 𝜋
2𝑁

(1 + 2 cos 𝜋
𝑁

+ cos 𝜔𝜏)
(5.15)

Which is non-zero except at 𝜔 = 0 in the Nyquist zone |𝜔| < 𝜋/𝜏, when 𝑁 ≥ 3. This means the

spectrum of 𝑢 and 𝑣 share almost exactly the same set of zeros. This nice property enables us to use

linear combination of 𝑢 and 𝑣 to cancel out a unwanted frequency component.

We define the pulse in the form of

𝑤(𝑁, 𝜃, 𝜔0; 𝑛) = [cos 𝜃 ⋅ 𝑢(𝑛) + sin 𝜃 ⋅ 𝑣(𝑛)] e j (2𝑛−𝑁+1)𝜔0𝜏/2 (5.16)
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as the building block of more complicated pulses. The parameter 𝜃 is determined by

tan 𝜃 = −𝑢(𝜔1 − 𝜔0)
𝑣(𝜔1 − 𝜔0)

, (5.17)

where 𝜔1 is the unwanted frequency component to be suppressed, and 𝜔0 adjusts the frequency of

the main lobe. By carefully choosing both 𝜃 and 𝜔0, we are able to synthesize a pulse without the

unwanted frequency component while maintaining zero overall detuning. This is done by numerical

optimization using, for example, the L-BFGS-B algorithm from SciPy [73–75]. Fig. (5.8) shows

the example of a pulse engineered to suppress the leakage into the second excited state.

Experimentally, longer pulses are often used because of the limitation of the output amplitude

from the arbitrary wave generator (AWG). Longer pulses can be synthesized by convoluting multiple

pieces together. The convolution of two functions 𝑔1(𝑛) and 𝑔2(𝑛) is define as

(𝑔1 ∗ 𝑔2)(𝑛) =
∞

∑
𝑚=−∞

𝑔1(𝑚)𝑔2(𝑛 − 𝑚). (5.18)

The important property of convolution lies in the convolution theorem [76]:

(𝑔1 ∗ 𝑔2)(𝜔) = 𝑔1(𝜔)𝑔2(𝜔), (5.19)

which implies the zeros in the spectrum of (𝑔1 ∗ 𝑔2) is the combination of zeros of 𝑔1 and 𝑔2. An

example of the pulses we use for the experiment is the convolution of three pieces

𝑓(𝑛) = 𝐴(𝑤1 ∗ 𝑤2 ∗ 𝑠𝑞)(𝑛), (5.20)

where 𝐴 is a scaling factor and 𝑤𝑖 represents a piece of pulse waveform given by Eq. (5.16) for

suppressing a specific frequency component, 𝑠𝑞 represents a square waveform of certain length.

This combined pulse is capable of canceling out multiple unwanted frequency components while

having a flat top, making it more efficient than a Gaussian pulse on AWG with limited output

amplitude. The combined pulse can be customized to fit with the purpose of specific experiment

not limited to gate-based approach, for example, by replacing the square wave with time-dependent

ones for the implementation of certain evolution. The number of 𝑤-pulses can also be changed.
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Figure 5.9: Combined pulse. (a) The real and imaginary parts of the combined pulse 𝑓. The pulse is
an example Eq. (5.20) with 𝑤1 and 𝑤2 designed to suppress both the leakage to the second excited

state and qubit crosstalk. (b) The Fourier transform of 𝑓. The spectral weight at the transmon

anharmonicity 𝛼 = −180 MHz is suppressed, as indicated by the red dashed line. In addition,

the spectral weight in resonance with the adjacent qubit which is at −450 MHz is suppressed,

simultaneously, as indicated by the red dotted line.

Fig. (5.9) shows an example of a combined pulse design to suppress both the leakage to the

second excited state and the crosstalk with an adjacent qubit. In the time domain, the pulse features

smooth transitions at both the beginning and the end, with a flat top (Fig. (5.9a)). The steepness of

the transitions are controlled by the total length of 𝑤1 and 𝑤2. The spectrum of the combined pulse

has zeros both at the qubit anharmonicity and the resonance frequency of the adjacent qubit. In

addition to these two specific frequencies, the pulse features the suppression of broadband frequency

components as shown in the rapid decrease in the amplitude spectrum away from the main lobe (Fig.

(5.9b)). As a comparison, the square wave contains a large amount of unwanted spectral weight, as

is shown in the slowly decreasing baseline in the amplitude spectrum (Fig. (5.10b)).

The pulse generated by this approach is able to suppress leakage into unwanted quantum states.

But phase error due to AC Stark shift needs to be compensated in other ways. We could use a pulse

detuning to achieve this [77–79], which needs to be experimentally calibrated.
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Figure 5.10: Square pulse. (a) The square pulse waveform in the time domain. (b) The Fourier

transform of of the square pulse. The frequency component at the transmon anharmonicity𝛼 = −180
MHz is large, as indicated by the red dashed line. Same large amplitude is displayed near the

resonance frequency of the adjacent qubit at −450 MHz (red dotted line).

(a)

Figure 5.11: Feedback control for parametric resonance. The horizontal axis shows the index

of the experiments, each separated by a few milliseconds. Real experiments is performed in a

interleaved approach.
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Appendix A:

A.1 Energy-momentum Tensor of Superconductor

Appendix: for future reference, the stress-energy tensor of a superconductor is given by

𝛿𝑇 𝛼
𝛽 = −𝛿(𝑗𝛼𝑝𝛽) − 𝛿𝛼

𝛽 ℒ,

𝛿𝑇 0
0 = ℋ = 𝜇𝛿𝑛 + 𝒋 ⋅ 𝛿𝒑,

𝛿𝑇 𝑎
0 = 1

𝑐
𝛿(𝜇𝒋),

𝛿𝑇 0
𝑎 = −𝑐𝛿(𝑛𝒑),

𝛿𝑇 𝑎
𝑎 = −𝑛𝛿𝜇 − 𝑝𝑎𝛿𝑗𝑎 + 𝑗𝑏𝛿𝑝𝑏, (Not summing over 𝑎)

𝛿𝑇 𝑎
𝑏 = −𝛿(𝑗𝑎𝑝𝑏), (𝑎 ≠ 𝑏).

(A.1)

The trace

𝛿𝑇 𝛼
𝛼 = 𝜇𝛿𝑛 − 𝒑 ⋅ 𝛿𝒋 − 3(𝑛𝛿𝜇 + 𝒋 ⋅ 𝛿𝒑) (A.2)

A.2 Properties of the Entangled States

To emphasize the special meaning of the singlet states, we also introduce a circle symbol in addition

to the labeled cup.

A generalized singlet state for 𝑁-level qudits is defined as a 𝑁-body entangled state

|𝐴𝑁⟩ = 𝜀𝑚1𝑚2…𝑚𝑁
|𝑚1𝑚2 … 𝑚𝑁⟩ , (A.3)

where 𝑚𝑖 takes value from 0 to (𝑁 − 1) and 𝜀𝑚1𝑚2…𝑚𝑁
is the Levi-Civita symbol.
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|Ψ−⟩ = |𝐴2⟩ = 1√
2 (|01⟩ − |10⟩) =

|𝐴3⟩ = 1√
6 (|012⟩ − |021⟩ + |120⟩ − |102⟩ + |201⟩ − |210⟩) =

(𝑈 ⊗ 𝐼) |Ψ−⟩ = = (𝐼 ⊗ 𝑈†) |Ψ−⟩=
𝑈 𝑈†

(𝑈 ⊗ 𝐼 ⊗ 𝐼) |𝐴3⟩ = = (𝐼 ⊗ 𝑈† ⊗ 𝑈†) |𝐴3⟩=
𝑈 𝑈†𝑈†

Figure A.2: Cup and cap. (a) Cup and (b) cap.

A.3 Bell States

The definition of the Bell states are

|Φ+⟩ = 1√
2

(|00⟩ + |11⟩)

|Φ−⟩ = 1√
2

(|00⟩ − |11⟩)

|Ψ+⟩ = 1√
2

(|01⟩ + |10⟩)

|Ψ−⟩ = 1√
2

(|01⟩ − |10⟩)

(A.4)
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A.4 Relation between the Bell States

The Bell states are related by single-qubit 𝜋-rotations

|Φ+⟩ = 𝑋 ⊗ 𝐼 |Ψ+⟩ = 𝐼 ⊗ 𝑋 |Ψ+⟩

|Φ+⟩ = −𝑖𝑌 ⊗ 𝐼 |Ψ−⟩ = 𝑖𝐼 ⊗ 𝑌 |Ψ−⟩

|Φ−⟩ = −𝑋 ⊗ 𝐼 |Ψ−⟩ = 𝐼 ⊗ 𝑋 |Ψ−⟩

|Ψ+⟩ = 𝑍 ⊗ 𝐼 |Ψ−⟩ = −𝐼 ⊗ 𝑍 |Ψ−⟩

(A.5)

⟨Φ+|𝑈 ⊗ 𝑌 𝑈†𝑌|Φ+⟩

⟨Φ−|𝑈 ⊗ 𝑋𝑈†𝑋|Φ−⟩

⟨Ψ+|𝑈 ⊗ 𝑍𝑈†𝑍|Ψ+⟩

⟨Ψ−|𝑈 ⊗ 𝑈†|Ψ−⟩

(A.6)

A.5 Arbitrary Single-qubit Rotation

There are two conventions for representing an arbitrary single-qubit rotation

1. The 𝑅𝒏̂(𝛼) representation, where rotation axis 𝒏̂ and the rotation angle 𝛼. This representation

is both geometrically intuitive with a clear physical meaning but less straightforward to

implement. The matrix representation appears to be complicated.

2. The 𝑈(𝜃, 𝜙, 𝜆) representation, where the three parameters are the Euler angle. This rep-

resentation is slightly less geometrically intuitive but is easier algebraically featuring the

decomposition into sequential rotations of simpler types.

We will discuss these two representations in the following subsections.

A.5.1 The 𝑅𝒏̂(𝛼) Representation

The first one is based on the rotation axis 𝒏̂ and the rotation angle 𝛼. 𝒏̂ is a 3-dimensional unit

vector specified by the polar angle 𝜃 and the azimuthal angle 𝜙 in the usual spherical coordinates
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Figure A.3: Ball of single qubit gates. Every single qubit gate can be represented in this ball (up to

a global phase). The structure of this ball is essentially equivalent to the 2QMES ball due to the

Choi–Jamiołkowski isomorphism [80].

The rotation axis 𝒏̂ is given by

𝒏̂(𝜃, 𝜙) = sin 𝜃 cos 𝜙 𝒙̂ + sin 𝜃 sin 𝜙 ̂𝒚 + cos 𝜃 ̂𝒛 (A.7)

Based on the parameterization, we alternatively use the notation 𝑅(𝛼, 𝜃, 𝜙). The rotation along the

𝒏̂ axis with angle 𝛼 is

𝑅𝒏̂(𝛼) = e− i 𝛼𝝈⋅𝒏̂/2 = 𝐼 cos 𝛼
2

− i 𝝈 ⋅ 𝒏̂ sin 𝛼
2

(A.8)

The matrix representation

𝑅𝒏̂(𝛼) = ⎛⎜⎜
⎝

cos 𝛼
2

− i sin 𝛼
2

cos 𝜃 − i e− i 𝜙 sin 𝛼
2

sin 𝜃

− i e i 𝜙 sin 𝛼
2

sin 𝜃 cos 𝛼
2

+ i sin 𝛼
2

cos 𝜃

⎞⎟⎟
⎠

(A.9)

All single-qubit gates can be regarded as special cases of 𝑅𝒏̂(𝛼). Here is an incomplete list of

them

𝑅𝑥(𝛼) = ⎛⎜⎜
⎝

cos 𝛼
2

− i sin 𝛼
2

− i sin 𝛼
2

cos 𝛼
2

⎞⎟⎟
⎠

, (A.10)
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𝑅𝑦(𝛼) = ⎛⎜⎜
⎝

cos 𝛼
2

− sin 𝛼
2

sin 𝛼
2

cos 𝛼
2

⎞⎟⎟
⎠

, (A.11)

𝑅𝑧(𝛼) = ⎛⎜⎜
⎝

e− i 𝛼/2 0

0 e i 𝛼/2

⎞⎟⎟
⎠

, (A.12)

Defined in this way, 𝑅𝒏̂(𝛼) contains a nontrivial geometric phase proportional to 𝛼. In order to see

this, we write

𝑅𝒏̂(2𝜋) = −𝐼 = e− i 𝜋𝐼, (A.13)

where an extra phase of −𝜋 is accumulated every 2𝜋 rotation. To compensate for the global phase,

the Pauli gates (effectively 𝜋 rotations) are defined with an extra phase factor of i = exp( i 𝜋/2)

relative to 𝑅𝒏̂(𝛼)

𝑋 = i 𝑅𝒙̂(𝜋) = ⎛⎜⎜
⎝

0 1

1 0
⎞⎟⎟
⎠

, (A.14)

𝑌 = i 𝑅𝒚̂(𝜋) = ⎛⎜⎜
⎝

0 − i

i 0
⎞⎟⎟
⎠

, (A.15)

𝑍 = i 𝑅 ̂𝒛(𝜋) = ⎛⎜⎜
⎝

1 0

0 −1
⎞⎟⎟
⎠

, (A.16)

Also, for the Hadamard gate

𝐻 = i 𝑅(𝒙̂+ ̂𝒛)/
√

2(𝜋) = 1√
2

⎛⎜⎜
⎝

1 1

1 −1
⎞⎟⎟
⎠

, (A.17)

Similarly, the roots of the gates are defined as

√
𝑋 = e𝑖𝜋/4𝑅𝒙̂ (𝜋

2
) = 1

2
⎛⎜⎜
⎝

1 + 𝑖 1 − 𝑖

1 − 𝑖 1 + 𝑖
⎞⎟⎟
⎠

, (A.18)

𝑆 =
√

𝑍 = e𝑖𝜋/4𝑅 ̂𝒛 (𝜋
2

) = ⎛⎜⎜
⎝

1 0

0 𝑖
⎞⎟⎟
⎠

, (A.19)
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𝑇 = 4
√

𝑍 = e i 𝜋/8𝑅 ̂𝒛 (𝜋
4

) = ⎛⎜⎜
⎝

1 0

0 e i 𝜋/4

⎞⎟⎟
⎠

. (A.20)

And generally, the phase gate

𝑃(𝛼) = e i 𝛼/2𝑅 ̂𝒛 (𝛼) = ⎛⎜⎜
⎝

1 0

0 e i 𝛼

⎞⎟⎟
⎠

. (A.21)

Finally, we define a special case of the 𝑅𝒏̂ (𝛼) when 𝒏̂ lies in the 𝒙̂- ̂𝒚-plane

𝑅(𝜙, 𝛼) = 𝑅𝒏̂( 𝜋
2 ,𝜙)(𝛼) = ⎛⎜⎜

⎝

cos 𝛼
2

− i e− i 𝜙 sin 𝛼
2

− i e i 𝜙 sin 𝛼
2

cos 𝛼
2

⎞⎟⎟
⎠

(A.22)

and especially the 𝜋 rotations

𝑅(𝜙, 𝜋) = − i ⎛⎜⎜
⎝

0 e− i 𝜙

e i 𝜙 0
⎞⎟⎟
⎠

, (A.23)

and 𝜋/2 rotations

𝑅 (𝜙, 𝜋
2

) = 1√
2

⎛⎜⎜
⎝

1 − i e− i 𝜙

− i e i 𝜙 1
⎞⎟⎟
⎠

(A.24)

A.5.2 Virtual 𝑧-rotations

Before moving on with more complicated manipulation of quantum gates, this subsection is devoted

for understanding virtual and physical frame rotations.

The qubit Hamiltonian in the lab frame is represented as

𝐻 lab
0 = −1

2
ℏ𝜔𝑞𝜎𝑧, (A.25)

The qubit is constantly rotating along the − ̂𝒛-axis. It would be helpful to distinguish the operators

and states by labeling them in different frames. The ground state and excited state are used to

encode a qubit

|0⟩lab = |𝑔⟩lab = ⎛⎜⎜
⎝

1

0
⎞⎟⎟
⎠

lab

, |1⟩lab = |𝑒⟩lab = ⎛⎜⎜
⎝

0

1
⎞⎟⎟
⎠

lab

. (A.26)
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We define the Pauli operators in the rotating frame to be 𝜎rot
𝑖 (𝑡), with

𝜎rot
𝑧 (𝑡) = 𝜎lab

𝑧 (𝑡) = 𝜎𝑧. (A.27)

We supress the label for 𝜎𝑧 in any frames for simplicity. They satisfy the same commutation relation

[𝜎rot
𝑗 , 𝜎rot

𝑘 ] = 2 i 𝜀𝑗𝑘𝑙𝜎rot
𝑙 . In order to find the other two, we write down the Heisenberg equations

of motion for the operators in the rotating frame,

𝜕𝑡𝜎rot
𝑥 = i

ℏ
[𝐻 lab

0 , 𝜎rot
𝑥 ] = 𝜔𝑞𝜎rot

𝑦 ,

𝜕𝑡𝜎rot
𝑦 = i

ℏ
[𝐻 lab

0 , 𝜎rot
𝑦 ] = −𝜔𝑞𝜎rot

𝑥 ,
(A.28)

At 𝑡 = 0, the operators are the same in both frames

𝜎rot
𝑥 (0) = 𝜎lab

𝑥 (0),

𝜎rot
𝑦 (0) = 𝜎lab

𝑦 (0),
(A.29)

From these equations we obtain the solution

𝜎rot
𝑥 = 𝜎lab

𝑥 cos 𝜔𝑞𝑡 − 𝜎lab
𝑦 sin 𝜔𝑞𝑡,

𝜎rot
𝑦 = 𝜎lab

𝑥 sin 𝜔𝑞𝑡 + 𝜎lab
𝑦 cos 𝜔𝑞𝑡.

(A.30)

In general, we could use the evolution operator

𝑈 lab(𝑡) = e− i 𝐻lab𝑡/ℏ = e i 𝜔𝑞𝑡𝜎𝑧/2, (A.31)

to find out the relation between the quantum state represented in the two frames

|𝜓(𝑡)⟩rot = 𝑈 lab†(𝑡) |𝜓(𝑡)⟩lab = |𝜓(0)⟩lab
(A.32)

The Hamiltonian in the rotation frame is 𝐻rot
0 = 0. In other words, the qubit state keeps constant in

the rotating frame, which make it the prototype of a reasonable computational space.

Now, let us consider adding an external microwave drive. Under rotating wave approximation

𝐻 lab = 𝐻 lab
0 + 𝐻 lab

𝑑

= −1
2

ℏ𝜔𝑞𝜎𝑧 − 1
2

ℏΩ𝑅 (𝜎lab
+ e− i 𝜔𝑞𝑡 + 𝜎lab

− e i 𝜔𝑞𝑡) ,

= −1
2

ℏ𝜔𝑞𝜎𝑧 − 1
2

ℏΩ𝑅 (𝜎lab
𝑥 cos 𝜔𝑞𝑡 − 𝜎lab

𝑦 sin 𝜔𝑞𝑡) ,

(A.33)
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where the raising and lowering operators are defined as 1

𝜎lab
+ = |1⟩lab⟨0| = 1

2
(𝜎lab

𝑥 − i 𝜎lab
𝑦 ) ,

𝜎lab
− = |0⟩lab⟨1| = 1

2
(𝜎lab

𝑥 + i 𝜎lab
𝑦 ) ,

(A.34)

In the rotating frame, the Hamiltonian has the simple form

𝐻rot = −1
2

ℏΩ𝑅𝜎rot
𝑥 , (A.35)

We define the computational frame 𝐹 with an extra frame rotation 𝜙𝐹,

𝜎𝐹
𝑥 = 𝜎lab

𝑥 cos(𝜔𝑞𝑡 + 𝜙𝐹) − 𝜎lab
𝑦 sin(𝜔𝑞𝑡 + 𝜙𝐹),

𝜎𝐹
𝑦 = 𝜎lab

𝑥 sin(𝜔𝑞𝑡 + 𝜙𝐹) + 𝜎lab
𝑦 cos(𝜔𝑞𝑡 + 𝜙𝐹).

(A.36)

Now, consider adding a frame rotation

𝜙𝐹 ′ = 𝜙𝐹 + 𝛼, (A.37)

We have the relation

𝜎𝐹 ′

𝑥 = 𝜎𝐹
𝑥 cos 𝛼 − 𝜎𝐹

𝑦 sin 𝛼,

𝜎𝐹 ′

𝑦 = 𝜎𝐹
𝑥 sin 𝛼 + 𝜎𝐹

𝑦 cos 𝛼,

𝐴𝐹 ′ = e− i 𝛼𝜎𝑧/2𝐴𝐹e i 𝛼𝜎𝑧/2

(A.38)

The corresponding relation for quantum states

|𝜓⟩𝐹 ′
= e− i 𝛼𝜎𝑧/2 |𝜓⟩𝐹 = 𝑅𝑧(𝛼) |𝜓⟩𝐹 , (A.39)

In other words, by doing the frame rotation, we are applying a virtual 𝑅𝑧 gate. Practically, the

computational frame is dynamically defined according to the value of 𝜙𝐹, whose value is updated

every time virtual 𝑅𝑧 gate is applied on the system. This type of virtual 𝑅𝑧 gate is the standard

implementation for cQED-based quantum information processing due to the advantage that it does

not introduce any extra noise. In terms of instrumentation, this approach only requires changing the

phase of the intermediate frequency signal.

1The sign in the definitions complies with our definition of the ground and exited states.

98



Throughout this thesis, we always work in the computational frame 𝐹 without explicit labeling

|0⟩ ≡ ⎛⎜⎜
⎝

1

0
⎞⎟⎟
⎠

𝐹

, |1⟩ ≡ ⎛⎜⎜
⎝

0

1
⎞⎟⎟
⎠

𝐹

, (A.40)

where 𝐹 may reduce to the plain rotating frame in the special case if the 𝑧-rotations being used are

all physical, which will be discussed in the next subsection.

A.5.3 Physical 𝑧-rotations

Arbitrary physical 𝑧-rotations can be implemented by cascading two 𝜋 rotations (up to a global

phase of 𝜋),

𝑅 (𝜙 + 𝛼
2

, 𝜋) 𝑅(𝜙, 𝜋) = − ⎛⎜⎜
⎝

0 e− i (𝜙+𝛼/2)

e i (𝜙+𝛼/2) 0
⎞⎟⎟
⎠

⎛⎜⎜
⎝

0 e− i 𝜙

e i 𝜙 0
⎞⎟⎟
⎠

= − ⎛⎜⎜
⎝

e− i 𝛼/2

0 e i 𝛼/2

⎞⎟⎟
⎠

= −𝑅𝑧(𝛼),

(A.41)

where 𝜙 could be arbitrarily chosen but usually 𝜙 = 0 for convenience. The advantage of physical

𝑧-rotations is they are natively compatible with parametric operations without any additional

adjustments.

A.5.4 The 𝑈(𝜗, 𝜑, 𝜆) Representation

This matrix can be decomposed into three parts. Due the advantage in engineering implementation, it

is usually defined as a standard type of gate, e.g. as part of the OPENQASM3 [81]. To experimentally

implement arbitrary rotation, we represent the rotation with Euler angles.

𝑈(𝜗, 𝜑, 𝜆) = ⎛⎜⎜
⎝

cos 𝜗
2

−e i 𝜆 sin 𝜗
2

e i 𝜑 sin 𝜗
2

e i (𝜑+𝜆) cos 𝜗
2

⎞⎟⎟
⎠

(A.42)
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The above expression can be decomposed into the combination of 𝑌-rotation sandwiched by

two phase gates,

𝑈(𝜗, 𝜑, 𝜆) = ⎛⎜⎜
⎝

1 0

0 e i 𝜑

⎞⎟⎟
⎠

⎛⎜⎜
⎝

cos 𝜗
2

− sin 𝜗
2

sin 𝜗
2

cos 𝜗
2

⎞⎟⎟
⎠

⎛⎜⎜
⎝

1 0

0 e𝑖𝜆

⎞⎟⎟
⎠

= 𝑃(𝜑)𝑅𝑦(𝜗)𝑃 (𝜆).

(A.43)

In terms of experimental realization, the above expression can be transformed into various forms.

On a platform with well-calibrated 𝜋/2 pulses, it is generally desirable to convert 𝑅𝑦(𝜗) into

𝑅𝑦(𝜗) = 1
4

⎛⎜⎜
⎝

1 − 𝑖 1 + 𝑖

1 + 𝑖 1 − 𝑖
⎞⎟⎟
⎠

⎛⎜⎜
⎝

e− i 𝜗/2 0

0 e i 𝜗/2

⎞⎟⎟
⎠

⎛⎜⎜
⎝

1 + 𝑖 1 − 𝑖

1 − 𝑖 1 + 𝑖
⎞⎟⎟
⎠

=
√

𝑋
†
𝑅𝑧(𝜗)

√
𝑋,

(A.44)

which can be easily implemented. Up to a global phase,

𝑈(𝜗, 𝜑, 𝜆) = 𝑅𝑧(𝜑)
√

𝑋
†
𝑅𝑧(𝜗)

√
𝑋𝑅𝑧(𝜆). (A.45)

Though the solution is not unique, the conversion table we choose is

𝜗 = 2 arcsin(sin 𝛼
2

sin 𝜃)

𝜑 = arctan(tan 𝛼
2

cos 𝜃) + 𝜙 − 𝜋
2

𝜆 = arctan(tan 𝛼
2

cos 𝜃) − 𝜙 + 𝜋
2

,

(A.46)

which are defined for −𝜋 ≤ 𝛼 ≤ 𝜋 and 0 ≤ 𝜃 ≤ 𝜋. For the boundary case where 𝛼 = ±𝜋, we

define

𝜗 = 𝜋 − |𝜋 − 2𝜃|

𝜑 = sgn(𝜋 − 2𝜃)𝜋
2

+ 𝜙 − 𝜋
2

𝜆 = sgn(𝜋 − 2𝜃)𝜋
2

− 𝜙 + 𝜋
2

,

(A.47)
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A.5.5 Hermitian Conjugate of 𝑈

𝑈(𝜗, 𝜑, 𝜆) = ⎛⎜⎜
⎝

cos 𝜗
2

−e i 𝜆 sin 𝜗
2

e i 𝜑 sin 𝜗
2

e i (𝜑+𝜆) cos 𝜗
2

⎞⎟⎟
⎠

(A.48)

𝑈†(𝜗, 𝜑, 𝜆) = ⎛⎜⎜
⎝

cos 𝜗
2

e− i 𝜑 sin 𝜗
2

−e− i 𝜆 sin 𝜗
2

e− i (𝜑+𝜆) cos 𝜗
2

⎞⎟⎟
⎠

(A.49)

𝑈†(𝜗, 𝜑, 𝜆) = 𝑈(−𝜗, −𝜆, −𝜑) (A.50)
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