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ABSTRACT OF THE DISSERTATION

Control and Thermodynamics of Superconducting Qubits with Non-Hermitian Dynamics

by

Serra Erdamar

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, 2025

Professor Kater Murch, Chair

As quantum systems are understood better from a fundamental physics perspective, we are

gaining more insight and ideas for their many applications. Among them are quantum com-

putation, sensing, and materials. Some difficulties that have been encountered are short life-

times and coupling to unwanted modes while attempting to control these systems, resulting

in error propagation. Previously, physicists have pursued Hermitian descriptions of systems

to preserve unitary evolution and real-valued measurements. However, non-Hermitian sys-

tems not only provide a realistic description of physical systems within larger environments,

but also a rich topological landscape from their complex energy spectrum. In this thesis, we

will explore how to control a non-Hermitian qubit to utilize its complex spectrum and the

role of its Hamiltonian in energetics and time dynamics. Because superconducting qubits of-

fer flexibility in parameter tuning, we can tune the values of the non-Hermitian Hamiltonian

to explore this complex spectrum across regions of both PT -symmetry and PT -symmetry

breaking. This complex energy spectrum forms a Riemann surface that has a branch cut

and branch points (exceptional points). Encircling these exceptional points adiabatically

allows for state transport that can non-trivially convert between eigenstates. Previous ex-

perimental studies of this process revealed a chirality: eigenstate conversion occurs when

following the state with higher gain, but breaks down when following the state with higher

loss. We explore how the interplay between gain and loss in modes of the system results

x



in the breakdown of this adiabaticity and how we can use a method based on shortcuts to

adiabaticity to circumvent this. Finally, we leverage this tunability to further investigate

how the components of the non-Hermitian Hamiltonian relate to classical thermodynamic

notions of internal energy and work in time-dependent protocols via the Jarzynski equality.
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Chapter 1

Introduction

The field of quantum physics has progressed tremendously over the last century. Quantum

systems have been extended to various platforms to utilize different control parameters and

prioritize certain benefits. For example, the crux of many quantum systems for scalability and

the application of quantum algorithms is their finite lifetimes, noise causing decoherence, and

coherence in unwanted spaces (the first two are depicted in Figure 1.1 for a two-level system

on a Bloch sphere). The finite lifetime is characterized by a T1 relaxation measurement where

the quantum system is prepared in an excited state and its population decay to the ground

state is represented by Pe(t) = Pe(0)e−t/T1 [1]. Decoherence in the form of dephasing results

from stochastic shifts in the system frequency, thus causing us to lose phase information of the

quantum state. For frequency ωq, the phase after time t is ϕ = ωqt+ϵ with uncertainty ϵ. The

timescale over which this occurs is characterized using a Ramsey measurement and is called a

T ∗
2 time [1]. Many efforts aim to minimize the loss through design improvements [2, 3, 4, 5, 6]

or through mathematical algorithms such as the surface code in the category of “Quantum

Error Correction” [7, 8, 9, 10, 11]. For the issue of coupling to other coherent subspaces,

important quantum control techniques to minimize this effect include creating pulses with

Derivative Removal by Adiabatic Gate (DRAG) [12, 13] or with pulse shaping methods using

spectral decomposition [14]. These methods are useful for frequently used pulses like π-pulses

or π/2-pulses which are applied to bring a qubit from one state to the other, 180 or 90 degrees

away on the 3-dimensional Bloch sphere, respectively. These pulses have a certain frequency

that corresponds to the resonance of the transition, a phase that corresponds to the axis of

rotation, and an amplitude envelope that determines strength over time. Previously (and

most simply), these pulses were applied with a square amplitude envelope. However, the

sharp edges can have a frequency spectrum at unintended values. When the time-dependent

pulse is spectrally decomposed, these frequencies can be at the anharmonicity difference

which can excite those higher energy transitions. These three pulse parameters give us the

tools to apply pulses like DRAG or other pulse shaping methods to cancel out and minimize
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Figure 1.1: Relaxation and dephasing time. (a) Single relaxation event depicted on
the Bloch sphere (upper) and in terms of population averaged over many events versus
time (lower). (b) Dephasing depicted on the Bloch sphere (upper) and in terms of phase
information transferred to units of population (lower). Reproduced from [1].

the coupling to unwanted states. These methods allow us to apply fast pulses that also

cancel out unintended frequencies and are an example of engineering for quantum systems.

Other kinds of quantum control are those in which the protocol requires the system to be

in an eigenstate of the time-dependent Hamiltonian (during which the previous parameters

of frequency, phase and amplitude can be varied) [15, 16, 17]. The system remains in the

instantaneous eigenstate when the Hamiltonian parameters are varied adiabatically. The

adiabatic theorem states that if a system’s parameters are varied slowly enough, it will

remain in the same eigenstate of the instantaneous Hamiltonian [18, 19]. If a system is

driven too fast, non-adiabatic transitions will occur between eigenstates. However, if it is

driven too slowly, a quantum system succumbs to loss. In our quest to control quantum

systems better, we encounter a trade-off between speed for faster computation to avoid this

decay and maintaining equilibrium to stay in the desired subspace.
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Our chosen platform is a superconducting qubit described by a non-Hermitian Hamilto-

nian [20]. This type of system provides a rich landscape due to its complex energy spectrum.

The real and imaginary parts of the eigenenergies form what are called Riemann sheets and

require adiabatic tuning of the parameters to traverse them. The motivation for following the

Riemann sheets closely is to resolve and utilize their topological features, including branch

cuts and branch points (exceptional points), which allow for state transport between eigen-

states [15, 21, 22, 23, 24, 25, 26, 27, 16]. Chapter 2 will explore the theory and experimental

verification of this energy spectrum. The imaginary components of these eigenenergies corre-

spond to gain and loss and ultimately lead to the breakdown of adiabaticity when attempting

to observe the state transport. In Chapter 3 we will explore the conditions for adiabaticity

and methods of Shortcuts to Adiabaticity (STA) to circumvent both non-adiabatic transi-

tions out of the eigenstate and loss due to decoherence. The method of STA we use is called

counterdiabatic driving and was first independently developed by Demirplak and Rice [28]

and Berry [29]. The technique at the time was aptly called transitionless driving to indicate

the suppression of non-adiabatic transitions. This approach allows us to tune our parame-

ters at faster-than-adiabatic speeds and resolve the Riemann topology by remaining on the

eigenstate of the instantaneous Hamiltonian.

Our study on adiabatic control of Hamiltonians has also motivated us to explore these pro-

cesses from a thermodynamic perspective, where optimizing measurements for work, heat,

and efficiency can give new insight into quantum control. Quantum thermodynamics in

recent years has explored the meaning of measurements as they pertain to feedback, cost,

coupling to a measurement apparatus, and measurement strength [30, 31, 32, 33, 34, 35, 36,

37, 38, 39, 40, 41, 42]. In understanding measurements, it has been shown that they can

actually be a resource for quantum-based engines [43]. The Hamiltonian describing these

systems governs the dynamics and also measurement expectation values. In the case of

non-Hermitian Hamiltonians, energy is complex which adds new richness to classical ther-

modynamics. We need to take care in how we measure our qubit for meaningful energetics. In

Chapter 4, we explore how we can characterize the energetics and understand the dynamics

in a non-Hermitian qubit using the Jarzynski equality [44]. The non-Hermitian Hamiltonian

that describes this qubit is special in that it can obey passive-PT -symmetry with balanced

gain and loss. The parameters can be tuned such that we can explore the regions of bal-

anced or imbalanced gain and loss. The consequences of the non-Hermitian Hamiltonian

dissatisfying PT -symmetry manifest in our measurements of the internal energy change of

the non-Hermitian qubit.
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Chapter 2

Non-Hermitian Quantum Systems

and Open Quantum Systems

This thesis focuses on experiments performed with superconducting circuits called trans-

mons [45]. Following the discovery in 2007, numerous theses have been written on this

topic, with fundamental construction and measurement principles particularly well described

in [46, 47, 1, 48]. The basic setup that we will utilize is presented in Fig. 2.1. The qubit

is physically embedded in an environment where coupling to nearby elements such as res-

onators, flux lines, and other qubits is necessary for coherent control and readout; however,

complete isolation of the qubit from external unwanted effects is not possible (Fig. 2.1a).

Therefore, it is important to study and understand systems in interaction with their sur-

roundings. The following sections will develop mathematical (Sections 2.1 and 2.2) and

experimental techniques (Section 2.3) to realize and measure a non-Hermitian qubit based

on a superconducting circuit. This type of circuit has both capacitance and non-linear in-

ductance, which results in an anharmonic potential (Fig. 2.1b) of which we will focus on the

lower three levels [45]. The “qubit” will refer to the {|e⟩, |f⟩} energy levels. The qubit is

dispersively coupled to a readout resonator (gray), a drive line (pink), and flux line (green)

for control. These couplings, though necessary for measurement and control, offer channels

for energy decay. One main source of decoherence, which is observable through the state

population, is decay/dissipation from higher energy levels to lower ones (γe and γf ). An-

other source of decoherence, which is observable through sequences that translate rotational

phase to population, is dephasing (γϕe and γϕf
). The non-Hermitian Hamiltonian that de-

scribes this qubit can obey PT symmetry, which corresponds to a system with balanced

gain and loss and results in real eigenvalues (Sec. 2.2). We will see that the dynamics of the

non-Hermitian Hamiltonian and its complex eigenstates and eigenvalues are experimentally

observable in Sections 2.3.4 and 2.3.5.
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(d)
Figure 2.1: Setup. (a) Transmon dispersively coupled to a readout resonator, drive line,
flux line, and external coaxial cable for engineered dissipation. (b) We will focus on the
lowest three energy levels of an anharmonic potential {|g⟩, |e⟩, |f⟩}. There is dissipation
from |f⟩ → |e⟩ at rate γf and |e⟩ → |g⟩ at rate γe. There is dephasing of the qubit transition
frequencies at rate γϕf

and γϕe corresponding to |f⟩ and |e⟩, respectively.

2.1 Mathematical framework of non-Hermitian Hamil-

tonians

2.1.1 Lindblad master equation and effective non-Hermitian

Hamiltonian

Open quantum systems can be described in the Lindblad master equation formalism. This

allows us to define dissipators that describe energy transitions that can happen within the

system due to an environment. These dissipators are of the form: Lk =
√
γk|i⟩⟨k| where

|k⟩ → |i⟩ when describing radiative decay or L2k =
√
γϕk

/2|k⟩⟨k| when describing dephasing.

We begin by looking at a 3 × 3 density matrix ρ3 that describes the state in the lower three

energy levels (Fig. 2.1b). Hc is the Hermitian coupling Hamiltonian that describes the drive

applied to the {|e⟩, |f⟩} manifold with strength J and detuning ∆ = ωdrive − ωef and is

defined: Hc = ∆|e⟩⟨e| + J(|e⟩⟨f | + |f⟩⟨e|).

ρ̇3 = −i[Hc, ρ3] +
∑
k∈e,f

Lkρ3L
†
k −

∑
k∈e,f,2e,2f

1

2
{L†

kLk, ρ3}. (2.1)

5



When the dissipator decay rates satisfy γf , γϕf
, γϕe ≪ γe, we can consider

∑
k∈f,2e,2f

1
2
{L†

kLk, ρ3}

and Lfρ3L
†
f negligible and rearrange this description to obtain the resulting effective non-

Hermitian Hamiltonian, Heff [20] in Eq. (2.2). The first term (−i(Heffρ3−ρ3H†
eff)) corresponds

to non-unitary coherent non-Hermitian evolution and the second term (Leρ2L
†
e) corresponds

to stochastic and random quantum jumps to the |g⟩ state. The loss contrast is defined as

γ ≡ γe − γf when γf is not negligible.

ρ̇3 = −i(Heffρ3 − ρ3H
†
eff) + Leρ3L

†
e, (2.2)

where Heff = Hc − i
2
L†
eLe. Since the qubit of interest is the two-level system comprised of

{|e⟩, |f⟩} we can look at that 2 × 2 manifold and write the equation of motion:

Heff =

(
∆ − iγ/2 J

J 0

)
, (2.3)

ρ̇2 = −i
(
Heffρ2 − ρ2H

†
eff

)
. (2.4)

Evolution according to Eq. (2.4) is non-unitary and not trace-preserving. Therefore, we

re-normalize our state to be trace preserving by:

ρ = ρ2/Tr[ρ2]. (2.5)

The density matrix can be decomposed into different components that represent the popu-

lation and coherence of the qubit states.

ρ =

(
ρee ρef

ρfe ρff

)
(2.6)

The components that correspond to the post-selected state population are the diagonal

elements, Pe = ρee and Pf = ρff . To build some intuition about how the post selected

effective non-Hermitian evolution affects the state, we plot Pe and Pf with ∆ = 0 and some

arbitrary non-zero drive strength J in Figure 2.2. In Fig. 2.2a, we see symmetric Rabi

6
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Figure 2.2: Rabi oscillations in a non-Hermitian system. Population of Pe and Pf

plotted as a function of time with arbitrary drive strength J and ∆ = 0. (a) Normal Rabi
oscillations with γ = 0. The rise and fall time is symmetric for Pe and Pf . (b) Rabi
oscillations according to Eq. (2.5). There is an asymmetry between the population behavior.
Pf has relative gain.

oscillations, where γ = 0. This corresponds to oscillations seen in Hermitian qubits. In

Fig. 2.2b we see asymmetry in the rise and fall time for the populations of |e⟩ and |f⟩. Due

to the measurement back-action of the post-selection, one state has relative gain compared

to the other state. If the system is initialized in the |e⟩ state where Pe = 1 and a drive is

applied to the qubit, the loss of the |e⟩ state corresponds to a relative gain of the |f⟩ state,

toward which the system tends.

The eigenvalues and eigenstates of Heff are defined as Heff |λn⟩ = λn|λn⟩ where n represents

indexing the positive and negative eigenstates with n ∈ ±.

λn =
∆

2
− iγ

4
±
√

1

4
(∆ − iγ

2
)2 + J2 (2.7)

|λ+⟩ = cos (α/2)|e⟩ + sin (α/2)|f⟩ (2.8)

|λ−⟩ = − sin (α/2)|e⟩ + cos (α/2)|f⟩ (2.9)

where α = arctan |J |
∆/2−iγ/4

. α = αR + iαI is referred to as the complex mixing angle. When

the imaginary part is related to the non-orthogonality of the eigenstates and when it is zero,

we obtain the orthogonal Hermitian Hamiltonian eigenstates. The dynamics of this system
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in the {|e⟩, |f⟩} basis is governed by the complex eigenvalue gap δλ =
√

(∆ − iγ
2

)2 + 4J2.

This will be further explored in the experimental Section 2.3.4.

2.1.2 Non-Hermitian eigenstate normalization

For Hermitian systems one obtains the property that ⟨ψi|ψj⟩ = δij, meaning that the eigen-

states form an orthonormal basis. When dealing with non-Hermitian eigenstates which are

generally non-orthogonal, we cannot assume this same property. Therefore, we need to define

left and right eigenstates separately that form a biorthogonal basis. The right eigenstates

are defined familiarly as Heff |λn⟩ = λn|λn⟩ and the left as H†
eff |λ̂n⟩ = λ∗n|λ̂n⟩. They are called

“left” eigenvectors because they satisfy: ⟨λ̂n|Heff = ⟨λ̂n|λn. Where n ∈ {1, 2, ..., N} and N is

the number of eigenstates (nondegenerate). The dagger means complex conjugate transpose

and the asterisk means complex conjugate. The left eigenstates in the bra space are:

⟨λ̂+| = cos (α/2)⟨e| + sin (α/2)⟨f | (2.10)

⟨λ̂−| = − sin (α/2)⟨e| + cos (α/2)⟨f | (2.11)

These left and right eigenstates form the biorthogonal basis and satisfy: ⟨λ̂n|λm⟩ = δn,m.

We can see that the coefficients of the eigenstates are normalized due to: cos (α/2)2 +

sin (α/2)2 = 1. These states also satisfy completeness/closure relations with [49, 50]:

∑
i

|λn⟩⟨λ̂n| =
∑
i

|λ̂n⟩⟨λn| = 1 (2.12)

2.2 Parity-time (PT ) symmetry and its properties

When dealing with quantum systems and measurements, one generally requires a Hermitian

Hamiltonian that has a real energy spectrum and unitary time evolution so that probabilities

are conserved. This indicates that energy is not leaving or entering the system, and therefore

the system is isolated. For example, for a Hermitian Hamiltonian, H, an initial state can

be evolved with unitary evolution operator Ût = e−iHt: |ψt⟩ = Ût|ψ0⟩. The probability is

conserved as: ⟨ψt|ψt⟩ = ⟨ψ0|Û †
t Ût|ψ0⟩ = ⟨ψ0|ψ0⟩. In 1998, Carl Bender [51] showed that

8



Gain Loss GainLoss Gain Loss

Figure 2.3: PT -symmetry. The red circles represent a system with gain at rate κ and the
blue circles represent a system with loss at rate −κ. The T operator switches the direction of
gain/loss and P switches the position. The double sided arrows between systems represent
coupling introduced between them. Adapted from PT -symmetry works such as [52, 53].

there is a more relaxed and physically significant condition that Hamiltonians can obey to

preserve the real energy spectrum other than H = H†. This condition is called Parity Time

(PT ) symmetry where P is the space reflection operator:

P =

(
0 1

1 0

)
(2.13)

and T is complex conjugation: T iT −1 = −i. T can also be called the time reflection

operator. As seen in the Schrodinger equation: iℏ ∂
∂t
ψ = Hψ, the imaginary term i is

associated with time t. Thus, reversing the direction of i reverses the direction of time.

These properties are also independent of each other: [P , T ] = 0. A Hamiltonian is said to

be PT -symmetric when it obeys the commutation relation [PT , H] = 0, thus remaining

invariant under space-time reflections. If there are two separate systems (or modes), one with

gain rate κ and the other with loss rate −κ, the composite system of these two subsystems

has net rate κ + (−κ) = 0. This system has a net probability flux of zero, but is still not

in equilibrium because one subsystem is growing and the other is decaying. If these two

subsystems are directly connected, the gain of one system can flow into the system with

loss, maintaining an equilibrium. We can see how this kind of system obeys PT -symmetry

since if we flip the position of the two subsystems (P) and then flip the sign of κ (T ), we

return to the original configuration as depicted in Fig. 2.3. Here, the color of each subsystem

corresponds to gain (κ) or loss (−κ) (red or blue, respectively). This allowed the discovery of

a group of non-Hermitian Hamiltonians, where H ̸= H†, that have a real energy spectrum.

This special group of non-Hermitian Hamiltonians are able to achieve a balanced gain and

loss of energy/population transfer and maintain conservation of probability.

Looking at our eigenvalues from Eq. (2.7), we observe that there is an overall background loss

common to both −iγ/4. Our effective non-Hermitian Hamiltonian can then be rearranged
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as HPT = Heff − iγ/4 and is referred to as a passive PT -system since there is one mode with

dominant loss:

HPT =

(
∆ − iγ/4 J

J +iγ/4

)
(2.14)

which has eigenvalues:

λn,PT = ±
√

1

4
(∆ − iγ

2
)2 + J2 (2.15)

This Hamiltonian satisfies the condition of [PT , HPT ] = 0 when ∆ = 0. This condition

can be rewritten as (PT )HPT (PT )−1 = HPT → PH∗
PT P−1 = HPT . Since P is a reflection

operator, it satisfies P2 = 1 and P = P−1.

PH∗P =

(
0 1

1 0

)(
−iγ/4 J

J +iγ/4

)∗(
0 1

1 0

)
= H (2.16)

The eigenvalues of this Hamiltonian have a complex spectrum as a function of its param-

eters ∆ and J (Fig. 2.4a). Due to the negative sign under the square root function, the

eigenvalues are able to merge as J is varied. This results in an exceptional point (EP) at

J = ±γ/4, ∆ = 0. When |J | > |JEP|, the system is in a regime of unbroken PT -symmetry

and the eigenvalues, λn,PT are purely real (blue region Fig. 2.4). When |J | < |JEP|, the sys-

tem is in a regime of broken PT -symmetry and the eigenvalues, λn,PT are purely imaginary

(red region Fig. 2.4). In the PT unbroken regime, the system is in a dynamic equilibrium,

thus, resembling a closed (isolated) system. When it is in the broken regime, the eigenvalues

are complex conjugates and have equal and opposite values in their imaginary component

(red region Fig. 2.4c). The system is not in equilibrium but due to one eigenstate growing

and the other decaying, the net probability flux is zero [52]. When ∆ ̸= 0, the eigenvalues

become complex and are no longer complex conjugates.
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Figure 2.4: Eigenvalue properties of a non-Hermitian Hamiltonian (a) The eigenval-
ues λn,PT (2.15) of Eq. (2.14) plotted as a function of drive strength J and detuning ∆. An
exceptional point (EP) occurs at J = ±γ/4 where the eigenvalues and eigenstates coalesce.
The eigenvalues become purely real (blue lines) when |J | > |JEP| and purely imaginary (red
line) when |J | < |JEP| and ∆ = 0. The eigenvalues for ∆ = 0 are plotted in (b) and (c)
to verify the spectrum in the PT -symmetric regime. (b) Re[λn,PT ] is plotted as a function
of J . The two EPs are observed at the transition points from PT unbroken (non-zero real
part) to PT broken (zero real part) and back to PT unbroken. (c) The same transitions are
observable for the imaginary component: Im[λn,PT ]. Where instead we have zero imaginary
part in the PT unbroken regions and purely imaginary in PT broken.
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2.3 Experimental Realization

PT -symmetric systems have since been realized on many platforms such as optical [54, 55,

56, 57, 58, 59, 60], photonics [61], spin systems [62], and cold atoms [63]. Intuitively and

most simply, PT -symmetric systems consist of a gain system coupled to a loss system, for

example a whispering gallery mode resonator with gain and one with loss [59]. In this work,

we show how we are able to achieve the same dynamics with mode-selective loss, also known

as a passive PT -symmetric system, in a superconducting qubit.

2.3.1 Superconducting Non-Hermitian Qubit

Our setup consists of a superconducting flux tunable qubit with a maximum (sweet spot)

frequency of ωge/2π = 4.373 GHz. The qubit is tunable by having a dc superconducting

quantum interference device (SQUID) as the non-linear element instead of a single Josephson

junction [64]. A SQUID consists of two parallel junctions that allow for the critical current

to be tuned by applying a magnetic flux through this loop using a dc current. The SQUID is

schematically represented by the red circuit in Fig. 2.1a and Fig. 2.5. We use a subset (Q2) of

a two-qubit chip fabricated by MIT Lincoln Laboratory (Fig. 2.5). It is dispersively coupled

to a resonator with frequency ωr/2π = 6.88865 GHz, a linewidth of κ/2π = 246 kHz,

and a coupling rate of g/2π = 33 MHz. The dispersive shift for a two-level system is

χ ≈ g2/(ωq − ωr) = g2/δ [45]. The setup includes a drive line (Fig. 2.5 blue “DL2”) for

manipulating the qubit with microwave sequences consisting of π pulses and Rabi drives,

making it easy to control the frequency, amplitude and phase of our signals.

To realize the non-Hermitian qubit on our superconducting qubit platform we need to induce

extra loss in just the |e⟩ state. We do this by coupling an off-chip resonator to the qubit

at a frequency that is slightly below the sweet spot frequency of the {|g⟩, |e⟩} transition,

at ωNH/2π = 4.25 GHz. We then flux tune the qubit down in resonance using a current

source applied to the flux line (Fig. 2.5 purple “p2”). This induces a Purcell effect decay

into the resonator from the qubit [65, 66, 67]. This off-chip resonator is simply a coaxial

cable trimmed down in length to correspond to the required frequency. The pin at the

center of the connectors are broken off to create an effective capacitance at either end. To

measure this effect, we perform a T1, or relaxation time, sequence to measure γe = 1/T1.
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The sequence is a π pulse to bring the state to the |e⟩ state through the drive line, and then

a variable wait time before performing a readout pulse (Fig. 2.6) through the input readout

line. The sequence is then repeated with different DC current values (flux Φ/Φ0) applied

to Q2 flux or global flux. Tuning the flux applied to the SQUID changes the resonance

frequency of the energy levels. The goal is to match the resonance of the {|g⟩, |e⟩} transition

to the external coax filter so that the decay rate γe (µs−1) is maximized (Fig. 2.6b). The

maximum of Fig. 2.6b is γe = 1.44 µs−1, but over the course of separate fridge cool downs and

recalibration, this number varies from γe ≃ 1.3− 1.9 µs−1 among the following experimental

results and γf ≃ 0.2 µs−1 .

2.3.2 Tomography

We’ve introduced that coupling to other on-chip elements can lead to dissipation, however,

these couplings are also important for readout. Readout has been established and written

about in many papers and theses [45, 68, 69, 1, 47], but the basic idea is that the signal passing

through the readout resonator acquires a dispersive shift χ. Due to the dispersive shift, we

can probe our resonator with a microwave tone through the readout “in” line and obtain a

phase shift from the readout “out” line using homodyne detection (Fig. 2.5) [68, 69, 1]. The

photons that populate the resonator through the readout line acquire a phase shift on the

way out that is dependent on the resonator’s frequency which is dependent on the qubit state.

This signal is then amplified using a flux pumped Josephson Parametric Amplifier (JPA) and

a high-electron mobility (HEMT) amplifier (Fig. 2.5). We want to resolve the phase shift

of the three lowest transmon states {|g⟩, |e⟩, |f⟩}. When considering higher excited states

with anharmonicity η = ωef − ωge, frequency transition ωi,i+1 = ωi+1 − ωi, and coupling

rate gi,i+1 ≈
√
i+ 1gg, where i ∈ {|g⟩, |e⟩, |f⟩}, the dispersive shift for a two-level system

becomes [70, 47]:

χge +
χef

2
= −

g2ge
δ

(
1

1 + δ/η

)
. (2.17)

When considering the χi for {|g⟩, |e⟩, |f⟩} we can use [71]:

χi,i+1 =
g2i,i+1

ωi,i+1 − ωr

. (2.18)
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Figure 2.5: Fridge diagram The qubit chip is mounted at the mixing chamber stage (MXC)
at ∼ 10 mK inside a copper can. There are two qubits on this chip, labeled Q1 and Q2. The
qubit we use as a non-Hermitian qubit is Q2. There is an off-chip coaxial cable capacitively
coupled to the chip and terminated on the other end at 50Ω. The qubit is flux biased (Q2
flux green line) with a DC twisted pair. This signal is passed through a low-pass filter
(LPF) from QDevil of 65 kHz mounted at the 4K stage. Pulses and drives on the qubit are
applied through a drive line (pink line). This also passes through various attenuators and
filters for thermalization and noise filtration. The qubit state is then readout by applying
a readout (RO) pulse through the transmission line to the resonator (RO in, red line), and
readout through the output of the transmission line (RO out, red line). The readout signal
is amplified using a Josephson Parametric Amplifier (JPA) from Raytheon BBN and a high-
electron mobility (HEMT LPF) amplifier. The JPA is flux biased through its green line and
pumped through its pink pump line. If needed, the global flux of the chip can be biased
through twisted DC pairs (green lines with coil). All lines are filtered with a combination of
LPFs or high cut-off frequency infrared filters (Eccosorb) to filter out unwanted frequencies
and attenuators (decibel dB) to help thermalize and reduce thermal noise.
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Figure 2.6: Engineering enhanced dissipation. (a) Flux line used to apply a DC cur-
rent to the SQUID (green). Drive line used to apply π pulses (pink). Readout resonator
dispersively coupled to the qubit for state dependent readout (gray). (b) (upper inset) A
DC pulse is applied throughout the sequence through the flux line (green). A πge pulse is
applied through the drive line to bring the state to |e⟩. A variable amount of time t is waited
before applying a readout pulse.

Through demodulation of our signal we obtain the phase (frequency) shift of the resonator

frequency I = cos (θ) and Q = sin (θ) which can be plotted to visualize the spread of the data

(Fig. 2.7). We can rotate our data around this plot to maximize the amount of information

on a single axis (I or Q) (Fig. 2.7a) and then plot the data in a histogram format along that

axis (Fig. 2.7b).

We define a general pulse s(t; t0, tf , ωi−1,i, A) with initial time t0, final time tf , transition

frequency ωi−1,i, and amplitude A. The main tools we will utilize are π-pulses to prepare

one of three states {0, s(πge, ωge, Age), s(πef , ωef , Aef )} : {|g⟩, |e⟩, |f⟩}, where not applying

a π-pulse prepares the |g⟩ state, a readout pulse with frequency ωRO and amplitude ARO

to probe the resonator through the input line, and JPA pump frequency, power, and bias

to optimize the gain of the output signal. By careful tuning of these parameters, we can

optimize our resolution and separation of the phase shift between these three states. The

preparation of each state is obtained by repeating three different sequences:

|g⟩ : s(t; 0, tRO, ωRO, ARO) (2.19)

|e⟩ : s(t; 0, πge, ωge, Age) + s(t; πge, πge + tRO, ωRO, ARO) (2.20)

|f⟩ : s(t; 0, πge, ωge, Age) + s(t; πge, πge + πef , ωef , Aef) (2.21)

+ s(t; πge + πef , πge + πef + tRO, ωRO, ARO) (2.22)
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We aim to maximize the metric of signal-to-noise ratio (SNR) to tune these parameters:

SNR =

∣∣∣∣ µk − µl

(σk − σl)/2

∣∣∣∣2 (2.23)

Where k, l ∈ {g, e, f} and µ is the mean and σ is the standard deviation of the Gaussian fit

to each state as seen in Fig. 2.7b. We can now optimize the SNR by sweeping ωRO to find

the dispersive shift that gives us best separation for both {|g⟩, |e⟩} and {|e⟩, |f⟩}. Tuning

the readout duration, tRO, can also increase the separation in readout between the states.

Longer tRO increases the separation due to integrating over more data, but also allows for

decay during the readout process, so we need to find the tradeoff balance between the two

effects. We can also increase the readout amplitude, ARO, for more readout power but that

can cause spurious transitions from lower states to higher states and deviation in the spread

of the clusters from Gaussian circles [69, 68, 4].

Once the SNR is calibrated, we can again fit to a three-Gaussian function (Fig. 2.7a) and

extract the intersections between the two nearest neighbor Gaussians. This gives us our

threshold bounds to threshold the IQ data into one of three states: {|g⟩, |e⟩, |f⟩}.

In certain readout setups, it can be difficult to optimize the readout parameters to have

clear separation along one axis, but enough within the full IQ picture. In these cases, we

can employ machine learning tools to threshold our data such as “k-means” and “support-

vector-machine”. “k-means” is an unsupervised learning technique used to find a specified

number of “k” clusters and provide labels for each (Fig. 2.7c). “Support-vector-machine” is

a supervised learning technique that receives classified (pre-labeled) data and tries to find

lines that best divide these classes (Fig. 2.7d) [72, 73].

Due to some leakage from higher states to lower states due to short lifetimes compared to

the readout pulse, the fidelity of thresholding the data is lower. We can predict the amount

of mixing and circumvent this by applying a scale matrix, M .

M =

pgg pge pgf

peg pee pef

pfg pfe pff

 (2.24)
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Figure 2.7: Dispersive shift readout methods. Experimental results are thresholded
according to the following three methods. (a) Readout calibration sequence results are
rotated to maximize information along one axis (I axis). (b) Binning the results along the
I axis as a histogram to visualize the distribution of acquired points. We can then fit the
counts to three Gaussian distributions. (a)-(b) The vertical dashed lines represent the found
threshold values on the I axis. (c) “k-means” method of clustering and colored by the cluster
classes (white x’s are included as illustration). (d) “Support vector machine” (SVM) method
of clustering. The points are prelabeled by the readout sequence they were obtained from.
SVM finds lines that best divide the three classes. Each point is colored according to the fit
results.

17



The diagonal elements pkk tell us the fidelity at which each state |k⟩ was measured. The

off-diagonals tell us the mixing between each state. For example, pge is the probability of

preparing |g⟩ and measuring |e⟩.

If P̃k are the populations we measure, our knowledge of our state measurement error from

M can be used to scale to our populations to P ′
k :

P
′
g

P ′
e

P ′
f

 = M−1

P̃g

P̃e

P̃f

 . (2.25)

Finally, the post-selected populations are obtained from Pe = P ′
e

P ′
f+P ′

e
and Pf =

P ′
f

P ′
f+P ′

e
.

These calibrations have been in the z measurement energy basis due to the dispersive cou-

pling. To reconstruct the density matrix, we need full state tomography to access the ex-

pectation values of the three Pauli matrices {σx, σy, σz}: ρ = 1
2
(I + ⟨x⟩σx + ⟨y⟩σy + ⟨z⟩σz).

This involves calibrating the pulses to measure the other two axes {x, y}. These are related

to z by a π/2 rotation along the polar angle and a 0 or 90◦ phase for the azimuthal angle.

This is easier to visualize using a Bloch sphere and with the vector notation that repre-

sents a state on the sphere: |ψ⟩ = cos(θ/2)|0⟩ + eiϕ sin (θ/2)|1⟩ (Fig. 2.8). Where |0⟩, |1⟩
represent the ground and excited state of any two level system. For future calibrations of

the non-Hermitian qubit, they are assigned to |e⟩, |f⟩. Furthermore, the eigenstates of σx,

| ± x⟩, can be calibrated using the azimuthal angle 180 and 0, respectively. Eigenstates of a

Hamiltonian are also known as “stationary states”. Therefore, when tuning the amplitude

and phase of these pulses, we can apply a Rabi drive on the orthogonal axis, and look for a

flat response (amplitude of oscillation is zero).

2.3.3 Flux noise and filtering

Due to the addition of a flux line, we are now susceptible to flux noise carried on this line.

More-so when we are operating away from the flux sweet spot. The qubit frequency can only

be tuned down from the sweet spot frequency due to the effective Josephson energy having

the external flux Φext dependence, 2EJ | cos Φext/Φ0| [70]. This is why we created the external

18



Figure 2.8: Bloch sphere. A qubit state on the Bloch sphere can be described using a
polar angle θ and azimuthal angle ϕ as |ψ⟩ = cos(θ/2)|0⟩ + eiϕ sin (θ/2)|1⟩.

coaxial filter to be slightly below the sweet spot for flexibility and certainty of being able to

reach it. Therefore, to preserve the coherence of our measurements and to isolate behaviors

mostly to γe, we want to minimize dephasing noise due to the flux line. The procedure for

measuring the 1/f flux noise amplitude is as follows [74]: (i) we measure the frequency of

the qubit as a function of input flux Φ, and normalize it by the flux quanta Φ0. We then take

the derivative of this to obtain the slope 1
2π

∂ω
∂Φ

. (ii) we perform a Ramsey echo (Γ2E) and T1

(T1 = 1/γ1) sequence to obtain the pure dephasing rate Γϕ = Γ2E − γ1/2. Γϕ is plotted as

a function of the slope 1
2π

∂ω
∂Φ

. Using the relationship Γϕ =
√
AΦ ln 2| ∂ω

∂Φ
|, we can obtain the

flux noise amplitude
√
AΦ. Initial measurements on unfiltered DC lines using this process

gave
√
AΦ ≃ 152, 000 µΦ0. To improve this, we added a Gateway Electronics low pass filter

(GQE-LPF-D) with fc = 20 kHz to the 4K stage for the DC wires to pass through, bringing
√
AΦ ≃ 3 µΦ0. This number is near the lowest reported in literature for this SQUID loop

perimeter size of
√
P = 10.22 µm1/2 [74]. The following experiments are performed with a

QDevil QFilter with cutoff frequency of fc = 65 kHz. This filter gives a flux noise amplitude

of
√
AΦ ≃ 25 µΦ0.

2.3.4 Exceptional points and phase transitions

Now that the non-Hermiticity is engineered and we can perform three state readout, we can

begin by verifying that the dynamics match the Hamiltonian eigenvalues and that we can
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Figure 2.9: Transition across the EP. (a) Population of the normalized |f⟩ plotted as a
function of time as J is varied. The black dashed line indicates the EP at JEP = 0.4075 rad/µs
as calculated by T1e = 1/γe and T1f = 1/γf sequences. (b) The Rabi oscillations are fit to a
sine decay and frequency ΩR is extracted. The real part of the difference of the eigenvalues
(2.7) Re[δλ] is plotted as the dashed orange line.

observe the two regions of PT -symmetry. The dynamics of the qubit depend on δλ = λ+−λ−
because |f⟩ can be written as a superposition of both the eigenstates |λ±⟩ [20]. To observe

the phase transition that occurs between the unbroken and broken regimes we will sweep

J while driving on resonance (∆ = 0). First we prepare the qubit in the |f⟩ state and

then turn on a drive with strength J . The result is Rabi oscillations at some frequency ΩR

(Fig. 2.9a). We extract this by fitting the normalized population of |f⟩, Pf , to a sine decay

A sin (ΩRt)e
−γRt + D (Fig. 2.9a). What we see here is a transition at the EP (black dashed

line) from the region of broken PT -symmetry where ΩR ≈ 0 to the region of unbroken PT -

symmetry where ΩR > 0 with the square root dependence. The difference of the real part

of the eigenvalues dictates the frequency of oscillations and is plotted in the orange dashed

line. When the real part goes to zero, we observe pure decay of the population.

The discovery and observation of EPs has been an exciting avenue of research, particularly

due to the square root dependence leading up to it. This allows for greater sensitivity and

amplification in making measurements, since a small number under a square root is not as

small (e.g.
√

0.01 = 0.1). There have since been experiments performed that make accurate
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measurements due to this property [75, 76]. Another theoretically explored benefit is speed

up of entanglement near exceptional points [77, 24].

2.3.5 Explorations of the topology

The dependence of the complex eigenvalues (2.7) on ∆ and J form what are called Riemann

sheets. A feature of these sheets is that they connect between the two EPs as branch cuts

on both the real and imaginary sheets (Fig. 2.10a,b). Each color on the sheet corresponds

to one of the two eigenstates. This branch cut offers a route to continuously and smoothly

switch between eigenstates (as indicated by the yellow trace) on both the real and imaginary

sheets. This route is referred to as encircling the exceptional point. If the parameters

are adiabatically varied in a closed loop around an EP, such that the qubit state is the

instantaneous state of the Hamiltonian, the state is transported into the other. The notion

and limit of adiabaticity will be discussed in Section 3.1. This behavior has been explored

on a variety of platforms such as optomechanical [15, 21], optics [22, 23, 24], NV centers

in diamond [25], photonics [26], nano-oscillators [27], and superconducting qubits [16]. In

addition to the behavior predicted by the Riemann sheets, there is a chirality observed in the

population transfer. For a given initial state, the encircling direction gives a different result

in which the state transfer is only completed in one direction. This behavior is a result of the

imaginary component of the eigenstates. In certain encircling directions, the path follows

the eigenstate with more loss, adiabaticity breaks down, and the gain state is amplified as

loss is accumulated [78, 16, 79, 15].

In Figure 2.10c and d, for a loop time of T and time t, encircling in the clockwise ⟳ and

counterclockwise ⟲ directions takes the specific form of:

J(t) =
Jmax − Jmin

2
cos

(
2πt

T

)
+
Jmax + Jmin

2
,

∆(t) = ∆⟳,⟲ sin

(
2πt

T

)
,

(2.26)

We prepare the |λ−⟩ eigenstate at a value of Jmax = 30 rad/µs and ∆ = 0. Since Jmax ≫ JEP,

|λ−⟩ ∝ | − x⟩. We drive with real coupling J = Jx in this loop, though complex coupling

will be explored in the next chapter. The loop is then varied for parameters of T = 1.4 µs,
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Jmin = 0, and ∆⟲,⟳ = ±10π rad/µs for Fig. 2.10(c,d), respectively. The instantaneous

Hamiltonian Heff at each time t is now dependent on these values of J and ∆. We plot the

corresponding instantaneous eigenstate Pauli expectation values {xI, yI, zI} in Fig. 2.10(c,d)

with the dashed lines. What we see for xI is that as the parameters J(t), ∆(t) are varied

slowly, xI is smoothly transferred from ⟨σx⟩ = −1 to ⟨σx⟩ = +1 and passes through the

branch cut near the EP around t/T = 0.5. zI is evolved close to ⟨σz⟩ = −1 = |f⟩ for

Fig. 2.10c and ⟨σz⟩ = +1 = |e⟩ for Fig. 2.10d. Since we are driving with J = Jx and

Jmin = 0, we see that yI = 0 for all t.

The Pauli expectation values are experimentally measured (solid lines) {x ≡ ⟨σ̂x⟩, y ≡
⟨σ̂y⟩, z ≡ ⟨σ̂z⟩} using tomography techniques (Sec. 2.3.2) and plotted alongside the simu-

lated Pauli expectation values (dotted lines) {xS, yS, zS = Tr[ρσ̂x,y,z]}. The experimental

state (solid lines) start off following the instantaneous eigenstates (dashed lines). After the

halfway point around t = 0.7 µs, the encircling approaches the EP after which the state

begins oscillating. These oscillations are due to non-adiabatic couplings between the eigen-

states that manifest as we approach the small energy gap, δλ, near the EP too quickly. The

following section (Sec. 3.1) will describe in detail the condition of adiabaticity and how it

leads to this breakdown. The state also ends in a mixed state due to loss of coherence due

to dissipation and dephasing. In dissipative quantum systems, there is a trade-off of varying

parameters slow enough to satisfy adiabaticity, and fast enough to mitigate losses due to

the relaxation rates γk,ϕ. The following chapter will aim to solve both of these issues while

maintaining the topology of the complex energy spectrum using shortcuts to adiabaticity.
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Figure 2.10: Riemann sheets and encircling the exceptional point. (a-b) The imag-
inary and real parts of the eigenvalues plotted as a function of ∆ and J . The exceptional
point at JEP = γ/4 is indicated as the orange circle. The yellow trace shows a loop that
encircles the EP and passes through the branch cut. (c-d) This encircling is performed ex-
perimentally for 1.4 µs in both the clockwise and counterclockwise directions for a value
of |∆max| = 10π rad/µs. The Pauli expectation values x, y, z are calculated from the state
population. The instantaneous eigenstates of the Hamiltonian are plotted with dashed lines:
xI, yI, zI.
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Chapter 3

Shortcuts to Adiabaticity and

Counterdiabatic Control of a

Non-Hermitian qubit

The following chapter will explore the how adiabaticity can be extended to non-Hermitian

Hamiltonians and how we can overcome the challenges associated with the complex energy

spectrum. Section 3.1 will go over the condition of adiabaticity in our relevant system and

parameter path. As shown in the previous section, attempting to drive adiabatically in a lossy

system results in decoherence to a mixed state or oscillations due non-adiabatic deformations

from driving too fast. Therefore, in Section 3.2 we show how we can obtain a drive that keeps

us close to the instantaneous eigenstates using shortcuts to adiabaticity. In Section 3.3 we

implement these drives on a superconducting qubit to explore the complex energy spectrum

of a non-Hermitian Hamiltonian and explore the limits of the protocol through theoretical

analysis and further experiments. The work presented in these previous sections includes

work published in [80]. In Section 3.4 we evaluate another method that guarantees Hermitian

drives when focusing on the eigenstate subspace the system was initialized in.

3.1 Adiabaticity in quantum systems

Adiabaticity in quantum systems offers avenues of robust control. The adiabaticity theorem

states that if a state is prepared in an eigenstate of the system, and the parameters are varied

adiabatically (and doesn’t cross any degeneracies), the system will remain in that eigenstate,

up to a phase [18, 19]. An interesting consequence of driving a system adiabatically for a

Hermitian system is that it allows boundary conditions to be set using the Hamiltonian.
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This means that not every step along a parameter path will matter, as long as it is driven

adiabatically, the state population will only depend on the initial and final Hamiltonian. This

provides a unique robustness to quantum state preparation. A common use of adiabaticity

is in cases where a system is driven with a time-dependent Hamiltonian of which the ground

state of the final Hamiltonian is the desired state. For example, demonstrating quantum

speedup in combinatorial problems using Rydberg atom arrays [17].

The adiabatic basis of a quantum system refers to the time-independent “frozen” picture of

the Hamiltonian, a.k.a, the instantaneous Hamiltonian. If a system is initialized in one of

these instantaneous eigenstates, and driven slowly enough, it should remain in that eigen-

state (up to a phase). For a time-dependent Hamiltonian H(t) we have its instantaneous

eigenstates and eigenvalues: H(t)|λn(t)⟩ = λn(t)|λn(t)⟩. As is valid for paths we explore

in this thesis, the evolution is closed loop with with loop time T and H(0) = H(T ). The

adiabatic approximation of the state |ψ(t)⟩ will be the eigenstate |λn(t)⟩ multiplied by some

phases Eq. (3.1). The first phase is path dependent and is commonly known as the dynam-

ical phase. The second phase θB can be solved for from the Schrödinger equation (where
˙f(t) = ∂tf(t)):

|ψ(t)⟩ = e−i
∫ t
0 dt′λn(t′)eiθB(t)|λn(t)⟩. (3.1)

We write θD = −
∫ t

0
dt′λn(t′) and drop (t) for legibility.

H(t)|ψ(t)⟩ = i|ψ̇(t)⟩, (3.2)

eiθDeiθBλn|λn⟩ = i[−iλneiθDeiθB |λ⟩ + eiθDiθ̇Be
iθB |λ⟩ + eiθDeiθB |λ̇⟩], (3.3)

eiθDeiθBλn|λn⟩ = i(eiθDeiθB)[−iλn|λ⟩ + iθ̇B|λ⟩ + |λ̇⟩], (3.4)

multiply ⟨λn| from the left and cancel like terms:

λn = i(−iλn + iθ̇B + ⟨λn|λ̇n⟩), (3.5)

θ̇B = i⟨λn|λ̇n⟩). (3.6)

Therefore, this adiabatic approximation encodes geometric information in ⟨λn(t)|∂tλn(t)⟩
as the vector potential. This is the integrand that leads to the geometric phase that is

accumulated for closed loop evolution [81, 82]:
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θB(T ) = i

∫ T

0

dt⟨λn(t)|∂tλn(t)⟩. (3.7)

The final state at time T in the adiabatic limit is:

|ψn(T )⟩ = e−i
∫ T
0 dtλn(t)−

∫ T
0 dt⟨λn(t)|∂tλn(t)⟩|λn(T )⟩. (3.8)

3.1.1 Notion of adiabaticity for open quantum systems

How slow is slow enough? An elegant proof of the adiabaticity condition can be read in [83].

The coefficients describing the state as a linear combination of eigenstates,

|ψ(t)⟩ =
∑
n

cn(t)ei(θD(t)+θB(t))|λn⟩, (3.9)

can be substituted into the Schrödinger equation. Through algebraic manipulation, this

yields conditions under which the state evolves adiabatically, characterized by constant pop-

ulations: |cm(0)|2 = |cm(t)|2. Meaning that a state prepared in an eigenstate |λm⟩ remains

in |λm⟩: |cm(0)|2 = 1, |cm(t)|2 ≈ 1. This means that for a state n ̸= m, it begins with

probability |cn(0)|2 = 0, later at time t the probability must satisfy |cn(t)|2 ≪ 1. This final

inequality is the basis for the adiabaticity condition and thus limits transitions to the other

eigenstate. During the derivation of the Hermitian adiabaticity condition, there are assump-

tions made that don’t hold for non-Hermitian systems. For example, that |ei
∫ t
0 λm(t′)−λn(t′))dt′|

contributes a value of 1 when the eigenvalues are real, since the magnitude |eix| = 1 for real

x.

For non-Hermitian systems, we have a complex x, therefore we need to take care with

accounting for the gain and loss present in the eigenstates and eigenvalues due to the

imaginary components. As seen in Section 2.3.5 and with the chirality in past experi-

ments [78, 16, 79, 15], there is an asymmetric breakdown in whether the state remains in the

instantaneous eigenstate. We can quantify this amount by taking into account the imaginary

component of the eigenstates over the loop duration: Inm ≡ Im
[∫ t

0
(λm(t′) − λn(t′))dt′

]
[50].
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Figure 3.1: Adiabaticity condition of non-Hermitian systems near an EP (a) The
adiabaticity condition anm (3.10) plotted for T = 0.2 µs with the region exceeding 1 shaded in
gray. (b) The maximum of anm is plotted for both encircling directions as the total variation
time T is increased. The clockwise encircling (blue) diverges due to encircling along the
Riemann sheet with more loss. The counterclockwise (pink) follows the path with relative
gain.

Due to some approximations taken to simplify the condition, we rename our adiabaticity cri-

terion to be anm ≪ 1, where anm ≈ |cn(t)|, thus still minimizing the probability of transition

to the other eigenstate |λn⟩.

anm =
|⟨λ̂n(t)|∂tλm(t)⟩|
|λn(t) − λm(t)|

e−Inm(t) ≪ 1, (3.10)

This equation has two important factors: the first one comes from the Hermitian adiabaticity

condition and only requires the evolution to be slow enough compared to the energy gap

between eigenstates. The second one comes from the imaginary component of our complex

energies and shows the exponential effects of gain/loss along the path. When we vary

the parameters of Heff as in Eqs. (2.26), the eigenstates |λn⟩ and eigenvalues λn change

accordingly. We plot this condition for an encircling loop where J > JEP, ∆ = 0 and

T = 0.2 µs in Figure 3.1a [80]. The gray dashed line is drawn at anm = 1 for reference

of the condition requirement. We see that anm < 1 in the beginning and end of the loop.

However, around the center of the loop (t/T = 0.5), the condition exceeds 1. This is due

to the fact that in the EP encircling loop, the center of the loop is when the eigenvalue gap

becomes smaller (denominator of Eq. (3.10)). This increases the value of anm and requires

even slower driving to satisfy adiabaticity. This rapid increase of anm when near the EP

provides the reason for the rapid breakdown in Figure 2.10c and d after t/T = 0.5. Since the
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maximum value (and region around it) ultimately determines whether there is a breakdown

in adiabaticity, we can take the maximum of anm and sweep the control time T . This is

calculated for the same initial eigenstate and with ∆⟳ and ∆⟲ in Figure 3.1b. We see that

for both encircling directions max[anm] follows a power law form of 1/T for short T due to the

first factor of Eq. (3.10). At long T , we see that the exponential term begins to dominate

and the encircling directions diverge from each other. The clockwise path accumulates

enough loss to diverge from adiabaticity (blue), while the path with gain approaches it

(pink) [84, 85]. As seen in Figure 2.10a, if the path follows the state with more loss in the

clockwise direction (the lower sheet corresponding to larger negative imaginary component),

adiabaticity breaks down. This exploration of anm in both encircling directions supports

previous experiments that are able to observe adiabatic state transfer in the direction with

relative gain [78, 16, 79, 15].

3.2 Counterdiabatic driving theory

The following section will derive a Hamiltonian to counteract these non-adiabatic effects

and allow us to drive with a Hamiltonian in shorter time scales without inducing unwanted

transitions, also known generally as shortcuts to adiabaticity [86, 87]. The specific control

method we use is called counterdiabatic driving [29, 28, 88, 89, 90, 91, 92, 83, 93, 94, 95, 96, 97]

and allows us to achieve adiabatic response at times faster than what satisfies Eq. (3.10).

Before delving into the mathematical formalism, consider an intuitive analogy: a waiter

carrying a tray of drinks with leaky glasses. The waiter faces a fundamental tradeoff: he

must transport the tray from point A to point B as quickly as possible, but each glass

has small holes that allow liquid to continuously leak out. If the waiter moves slowly and

cautiously, taking gentle turns around obstacles, the glasses remain perfectly stable and

upright. However, this leisurely pace comes at a cost: by the time he reaches the destination,

most of the liquid has leaked away through the holes. Conversely, if he rushes directly

toward point B, he can minimize the leakage time, but his rapid movements and sharp turns

around obstacles will cause the glasses to tip and shift. The solution lies in counterdiabatic

driving. By anticipating the forces that his rapid movements will exert on the tray, the

waiter can preemptively adjust his grip and tray angle to counteract these destabilizing

influences. This allows him to maintain both speed and stability: he reaches point B quickly

while preserving the maximum amount of liquid. This physical intuition directly parallels
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the quantum mechanical principle, where the “liquid” represents the state population and

coherence we wish to preserve and the “counteracting forces” are the additional control fields

that maintain adiabatic evolution even during rapid parameter variation.

3.2.1 Reverse engineering to achieve the adiabatic state

The method to derive this control Hamiltonian is called “reverse engineering” [29]. We start

with the state explained in Sec. 3.1, Eq. (3.1), as our desired final state. Now we bring back

the Schrödinger equation to solve for Ht based on this state:

i|ψ̇(t)⟩ = Ht|ψ(t)⟩. (3.11)

We can define any unitary operator satisfies the Schrödinger equation as:

iÛ(t) = HtÛ(t), (3.12)

Ht = i
˙̂
U(t)Û † (3.13)

Û(t) =
∑
n

exp {−i
∫ t

0

dt′λn(t′) −
∫ t

0

dt′⟨λn(t′)|λ̇n(t′)⟩}|λn(t)⟩⟨λ(0)|. (3.14)

This gives us the Hamiltonian:

Ht =
∑
n

|n⟩λn⟨λ| + i
∑
n

(|∂tλn⟩⟨λn| − ⟨λn|∂tλn⟩|λn⟩⟨λn|). (3.15)

Further observation of this new Hamiltonian shows us that it is the addition of our original

Hamiltonian with some new components Ht = Heff +HCD:

HCD(t) = i
∑
n∈±

|∂tλn(t)⟩⟨λn(t)| − ⟨λn(t)|∂tλn(t)⟩|λn(t⟩⟨λn(t)|. (3.16)
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HCD(t) is now an additional drive that is applied along with the parameters of Heff(t). The

first term of HCD accounts for the non-adiabatic transitions out of the eigenstate when tuned

at a certain rate. The second term has the integrand to the Berry phase (3.7), called the

Berry connection, and is therefore related to the geometry of the parameters [81].

3.2.2 Non-Hermitian counterdiabatic drive

As mentioned in Section 2.1.2, we need to take care when defining our eigenstates and

operators in a non-Hermitian setup due to bi-orthogonality. The previous derivation can be

extended to a non-Hermitian system using the left eigenstate for the “bra” states ⟨λ̂n| [49]:

HCD(t) = i
∑
n∈±

|∂tλn(t)⟩⟨λ̂n(t)| − ⟨λ̂n(t)|∂tλn(t)⟩|λn(t⟩⟨λ̂n(t)|. (3.17)

To understand this counterdiabatic drive Hamiltonian for our system better, it is useful to

dive deeper into the decomposition of the eigenstates previously defined in Section 2.1.1 as

Eqs. (2.8) and (2.9). The defined angle α = arctan |J |
∆/2−iγ/4

is referred to as the complex

mixing angle and can be decomposed as α = αR + iαI. The non-orthogonality of our non-

Hermitian eigenstates is determined by the imaginary part, called the hyperbolic angle, αI.

When αI = 0, the eigenstates are orthogonal. When αI ̸= 0, we can define the eigenstate

overlap as ⟨λ−|λ+⟩ = ⟨λ̂−|λ̂+⟩ = i sinhαI and norm as ⟨λ±|λ±⟩ = ⟨λ̂±|λ̂±⟩ = coshαI [80].

Now that we’ve defined this complex mixing angle, it follows that there should be a rotation

corresponding to this angle to obtain our eigenstates which we will call Ĉy(α). This is a

rotation around the y-axis of the Bloch sphere applied to |e⟩, |f⟩. So we can define the eigen-

states as |λ±⟩ = Ĉy(α)|e/f⟩. Since α has two components to it, we can further decompose

this rotation into:

Ĉy(α) ≡ e−iα
2
σ̂y = e−iαr

2
σ̂ye

αi
2
σ̂y ≡ R̂y(αr)B̂y(αi). (3.18)

We can connect this rotation to our dynamics by considering the steps taken in discrete time

steps t0 → t in the form of a transport operator: T̂ (t, t0) = Ĉy(αt)Ĉy(−αt0) = e−
i
2
(αt−αt0 )σ̂y .

This essentially shows how if I want to create the eigenstate at time t with αt, I can undo the
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Figure 3.2: Parallel transport An example of a state |ψ(t)⟩ in purple and its derivative in
|∂tψ(t)⟩ in yellow.

rotation of the eigenstate at t0 with Ĉy(−αt0), and then apply the new rotation Ĉy(αt). Since

this describes our time dependent dynamics, we can also obtain this from the Hamiltonian

T̂ (t, t0) ≡ e
−i

∫ t
t0

Hcd(s)ds. We can equate these two definitions and obtain:

Hcd(t) =
α̇t

2
σ̂y. (3.19)

From equation (3.18), we can see that |∂tλ±⟩ = −i α̇t

2
σ̂y|λ±⟩. Multiplying this out we get:

σy|λ+⟩ =

(
0 −i
i 0

)(
cosα/2

sinα/2

)
=

(
−i sinα/2

i cosα/2

)
= i|λ−⟩ (3.20)

Plugging this back in, we now see that |∂tλ±⟩ = α̇t

2
|λ∓⟩. This means that, according to the

biorthogonal properties from Sec. 2.1.2, ⟨λ̂±|∂tλ±⟩ = ⟨λ̂±|λ∓⟩ = 0. This expression removes

the second term of Eq. 3.17 and shows parallel transport because a change in time of an

eigenstate produces a vector that is orthogonal to the unchanged eigenstate and can be

viewed in Figure 3.2 for a general time varying state |ψ⟩. This is not generally true for cases

of complex coupling: J = Jx + iJy = |J |eiϕ and general definitions will be defined later in

Section 3.3.3.
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Using the completeness theorem from Sec. 2.1.2, we can reduce Eq. (3.17) to Eq. (3.19) using

the definition of |∂tλ±⟩. (We drop the time dependence (t) for legibility)

HCD = i
∑
n∈±

|∂tλn⟩⟨λ̂n| (3.21)

HCD = i
∑
n∈±

−i α̇t

2
σ̂y|λn⟩⟨λ̂n| (3.22)

HCD =
α̇t

2
σ̂y
∑
n∈±

|λn⟩⟨λ̂n| (3.23)

HCD =
α̇t

2
σ̂y (3.24)

Now that we have a direct relationship between HCD and α which is a complex number, HCD

can be non-Hermitian. So, we can decompose it into two components:

Hcd(t) = H
(h)
cd +H

(ah)
cd ≡

(
0 Jcd

−Jcd 0

)
(3.25)

Where Jcd = α̇i

2
− i α̇r

2
. H

(h)
cd are parameters that are Hermitian and can be implemented

in experiment:
(

0 −iα̇R/2
iα̇R/2 0

)
. Whereas H

(ah)
cd we cannot implement because it is non-

Hermitian:
(

0 α̇I/2
−α̇I/2 0

)
. However, if α̇i = 0, meaning the imaginary part of α is constant,

HCD becomes Hermitian and implementable.

3.3 Implementation of counterdiabatic protocols

To demonstrate how counterdiabatic driving will allow us to complete a parameter variation

faster than required by the adiabaticity condition (Eq. (3.10)), we begin with performing

the encircling for a fast loop time of T = 0.2 µs. First we prepare the system in the |λ−⟩
eigenstate at J = 30 rad/µs and ∆ = 0. Then we tune the parameters of Heff according to

Eq. (2.26) These paths are shown in Figure 3.3a and b, for Jmax = 30 rad/µs, Jmin = 0 rad/µs,

∆⟳ = 10π rad/µs and ∆⟲ = −10π rad/µs, respectively. The loop time T is split up into
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discrete steps (N = 51) such that our step size is δt = T/(N − 1). We then perform

quantum state tomography and readout as described in Sec. 2.3.2 at each successive time

step and obtain the experimental Pauli expectation values {x, y, z}. We show the results in

Figure 3.3c and d for ∆⟳ and ∆⟲, respectively, using solid lines [80]. The dashed lines are the

instantaneous eigenstates {xI, yI, zI} calculated from Heff as xI, yI, zI = ⟨λn|σ̂x,y,z|λn⟩. Where

n → − while t < T/2 and n → + while t > T/2. At first, we see that the experimental

results are close to the instantaneous eigenstates. However, after t > T/2 = 0.1 µs, we

see that the state deviates from the dashed lines. This can be attributed to the previous

calculation of the adiabaticity condition in Fig. 3.1a where we saw that the energy gap

becomes much smaller at the center of the loop and the condition is violated. Similarly, this

region of extreme violation is highlighted in gray. This breakdown is due to the fact that the

loop time is short, and thus the parameter variation is too fast for the system to equilibrate

to the instantaneous eigenstate of its instantaneous Hamiltonian Heff .

To correct for the non-adiabatic dynamics from Fig. 3.3(c,d), we add the additional drive

derived earlier from Section 3.2.2. Due to a small non-Hermitian component H
(ah)
cd , we can

apply an approximate drive as: H̃CD = 1
2
(Hcd + H†

cd). We display the parameters from

HCD in Figs. 3.3(e,f). Where JCD (blue trace), corresponds to the Hermitian component

H
(h)
cd . The experiment is repeated with the same protocol but with Heff + H̃cd. We show the

results in Figs. 3.3(g,h) and observe that the experimental state follows the instantaneous

lines closely. These results show that the state is able to smoothly follow the Riemann sheets

through the branch cut to observe state transfer in either encircling direction. The system

was initialized in |λ−⟩ and ends in |λ+⟩, as verified by x(0) ≃ −1 and x(T ) ≃ +1.

To visualize what this looks like on the Bloch sphere, we plot both the Bloch coordinates of

the system driven with Heff (green trace) in Fig. 3.4a and Heff +H̃cd (blue trace) in Fig. 3.4b

for the results in Fig. 3.3(c,g). The instantaneous eigenstate coordinates are plotted with

black dashed lines. We see how the experimental trace with counterdiabatic driving follows

it closely.

3.3.1 Evaluating the success of the counterdiabatic drive

Though the success of the counterdiabatic drive is visually verified, we want to quantify this

using a metric. We choose the trace distance D(ρI, ρq) to show how closely the experimentally
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Figure 3.3: Encircling an EP with and without counterdiabatic driving. (a,b)
Heff time dependence according to Eq. (2.26) plotted for T = 0.2 µs in both encircling
directions. (c,d) Pauli expectation values {x, y, z} experimentally obtained from quantum
state tomography (solid lines). The Pauli expectation values for the instantaneous eigenstates
{xI, yI, zI} are calculated and plotted for reference (dashed lines) The gray shaded region
corresponds to the region from Fig. 3.1a where the adiabaticity parameter far exceeds the
condition and therefore adiabaticity breaks down. We see that during this region is when
the state begins to deviate from the instantaneous eigenstates. (e,f) The components of
the approximate drive H̃cd are plotted as a function of time for both directions. (g,h) The
qubit is now driven with the total Hamiltonian that includes the counterdiabatic drive. The
quantum state (solid lines) now closely follow the instantaneous eigenstates (dashed lines).
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Figure 3.4: Counterdiabatic driving result visualized on Bloch sphere Visualizing
the ∆⟳ encircling loop. The instantaneous eigenstates {xI, yI, zI} are plotted as the black
dashed lines. (a) The experimental Pauli expectation values, {x, y, z}, plotted as Bloch
coordinates for Heff in the green trace. (b) The experimental {x, y, z} for Heff + H̃cd plotted
in the blue trace. We observe that the blue trace follows the black dashed lines much closer
now.

reconstructed state ρq, follows the instantaneous eigenstate of the Hamiltonian ρI [80]. We

define the density matrices as: ρI = 1
2
(Î+xIσ̂x+yIσ̂y +zIσ̂z) and ρq = 1

2
(Î+xσ̂x+yσ̂y +zσ̂z).

The trace distance is then defined as:

D(ρI, ρq) =
1

2
Tr[
√

(ρI − ρq)†(ρI − ρq)]. (3.26)

We can see in Figure. 3.5 that the trace distance for the drive with the addition of counter-

diabatic elements (blue) is much smaller than of that with the original Hamiltonian (green).

To further explore the robustness of the counterdiabatic drive, we study its dependence as a

function of the encircling period T . It is now useful to calculate the average trace distance,

D which is given by averaging D(ρI, ρq) over the entire loop time. The values for T = 0.2 µs

in Figs. 3.3(c,d) ∆⟳ and ∆⟲ are D = 0.411 and 0.378, respectively. With the addition

of counterdiabatic driving in Figs. 3.3(g,h), D = 0.086 and D = 0.067, respectively. In

Figure 3.6(a,b) we plot D for encircling loop periods of T = 0.01 µs to T = 2.1 µs. The

connected green squares indicate driving with Heff(t) for both clockwise ∆⟳ (Fig. 3.6a) and

counterclockwise ∆⟲ (Fig. 3.6b). We see that as the loop period is decreased, D increases.
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Figure 3.5: Evaluating the efficacy of counterdiabatic driving over time. The
trace distance (3.26) calculated for the reconstructed experimental state of driving with
Heff(t) (green) and with the addition of H̃CD(t) (blue) (a) from Figs. 3.3(c,g) and (b) from
Figs. 3.3(d,h), respectively.

This indicates deviation of the state from the instantaneous eigenstates. We can support

this by plotting (on the right axis) the adiabaticity condition max[anm] as a function of loop

period with a dashed line at anm = 1. We see that it increases as T decreases, thereby

supporting the conclusion that D increases for our evolved state at small T s due to non-

adiabatic deformations. The connected blue circles are the calculated D for driving with

Heff(t) + HCD(t). The increase in these values at short T is attributed to the experimental

limitations. As the loop period is decrease, the counterdiabatic drive strength also increases.

We can see this by plotting the maximum required drive strength of HCD’s components in

Fig. 3.6c. At T < 0.02 µs, the components of HCD exceed the experimental limit (black

dashed line). For values of T > 0.02 µs, we see that the D for driving with H̃cd are

significantly lower. As T gets larger, D for H̃cd in blue circles approaches the green squares

for Heff and levels out at about D ≈ 0.2. This limit is due to decoherence and quantum

jumps taking place from γϕ and γf being non-zero. We can conclude from this loop period

sweep that the counterdiabatic drive is effective in faster than adiabatic timescales, allowing

us to also drive with small enough T to avoid decoherence effects taking place.

Another useful and related way to compare our measured qubit state (through the experi-

mental Bloch expectation values) is through the fidelity. The fidelity is defined as:

F (ρI, ρq) =

(
Tr

[√√
ρIρq

√
ρI

])2

(3.27)
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Figure 3.6: Evaluating the success of counterdiabatic driving. Average trace distance,
D, is evaluated for loops of different T . The encircling loop is varied with Jmax = 30 rad/µs
and Jmin = 0 rad/µs. It is varied in both encircling directions with (a) ∆⟳ = 10π rad/µs and
(b) ∆⟲ = 10π rad/µs. The green squares correspond to D for evolution under Heff and the
blue circles correspond to evolution under Heff + H̃cd. The adiabaticity condition, max[anm],
is plotted on the right axis as a function of T (dashed green line) with max[anm] = 1 noted
with a gray dashed line. (c) The maximum value of each Hamiltonian drive component is
plotted versus time T for Heff(t) and H̃cd(t). The experimental limitation on drive amplitude
is plotted with a black dashed line.
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Figure 3.7: Evaluating the counterdiabatic drive using fidelity. The average of
Eq. (3.27), F , is plotted as a function of T for both encircling directions. Parameters are
the same as in Fig. 3.6.

Where ρq is the density matrix of our qubit state and ρI is the density matrix of our instan-

taneous eigenstate. The average fidelity, F , is Eq. (3.27) averaged over all time steps in a

loop. The relationship of fidelity to the previously used trace distance D(ρ, σ) is:

1 −
√
F (ρI, ρq) ≤ D(ρI, ρq) ≤

√
1 − F (ρI, ρq) (3.28)

The upper bound is only true when the state is a pure state [98].

3.3.2 Defining Apollonius circles and parameter space relation-

ships

This next section will explore why we were able to apply HCD given that α̇t is generally

complex [80]. The previous encircling loops resulted in a Hermitian drive because of a

condition where α̇I = 0. This means that the non-orthogonality of our eigenstates are

constant throughout the loop. We can explore our parameter space further by defining a

complex variable ε = ∆/2 + iJ . We can redefine α = arctan ( |J |
∆/2−iγ/4

) in terms of the

parameter space ε using the relationship between arctan and log for complex numbers z:
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arctan (z) =
i

2
log

(
1 − iz

1 + iz

)
(3.29)

z =
J

∆/2 − iγ/4
(3.30)

Since J is real:

(3.31)

α =
i

2
log

(
1 − i J

∆/2−iγ/4

1 + i J
∆/2−iγ/4

)
(3.32)

=
i

2
log

(
∆/2 − iγ/4 − iJ

∆/2 − iγ/4 + iJ

)
(3.33)

=
1

2i
log

(
∆/2 − iγ/4 + iJ

∆/2 − iγ/4 − iJ

)
(3.34)

=
1

2i
log

(
ε− iγ/4

ε∗ − iγ/4

)
(3.35)

We can now take this reformulation of α(ε), which is dependent on the complex parameter

space, and define the real and imaginary parts of it using properties of complex numbers

z = |z|eiθ and log(z) = log(|z|) + i arg(z):

αR(ε) =
1

2

(
arg

ε− iγ/4

ε∗ − iγ/4

)
=

1

2
(arg (ε− iγ/4) + arg (ε+ iγ/4)) (3.36)

αI(ε) = −1

2

(
log

∣∣∣∣ ε− iγ/4

ε∗ − iγ/4

∣∣∣∣) =
1

2

(
log

∣∣∣∣ε+ iγ/4

ε− iγ/4

∣∣∣∣) (3.37)

(3.38)

using the property that |ω| = |ω∗| we can equate |ε∗ − iγ/4| = |ε + iγ/4| = |(ε + iγ/4)∗|.
Since the counterdiabatic drive depends on α̇t, we look at the derivatives of these expressions.

As noted in the earlier section, our drive is only Hermitian (and implementable) if α̇I = 0.

Therefore, we are looking for paths that satisfy:

39



αI(ε) =
1

2

(
log

∣∣∣∣ε+ iγ/4

ε− iγ/4

∣∣∣∣) = constant (3.39)

∴ r =

∣∣∣∣ε+ iγ/4

ε− iγ/4

∣∣∣∣ = constant (3.40)

Eq. (3.40) describes a set of points known as an Apollonius circle. They are the set of points

where the ratio of the distances to JEP = ±iγ/4 is constant and are illustrated in gray circles

in Figure 3.10a. Our previous encircling parameters are very near to an Apollonius circle

with r = 0.9733 (solid gray line) which is why we had a negligible anti-Hermitian component

to our counterdiabatic drive. We can derive the center c and radius R of the Apollonius circle

using the definition of a circle and rearranging such that ∆/2 = xc and J = yc correspond

to (xc, yc) coordinates of a circle:

(xc − h)2 + (yc − k)2 = R2 (3.41)

x2c +

(
yc +

γ(1 + r2)

4(1 − r2)

)2

=

(
γ(1 + r2)

4(1 − r2)

)2

− γ2

16
. (3.42)

This corresponds to a center c and radius R of:

c =

(
γ

4

1 + r2

1 − r2
, 0

)
, R =

2γ
4
r

|1 − r2|
. (3.43)

We can extract our drive parameters through the center c and radius R:

Jmax = c+ (R, 0), Jmin = c− (R, 0),∆⟲ = 2R (3.44)

To look more in depth, we can show that the angle θ between the right eigenstates |λ±⟩ and

their angle from the y-axis and the hyperbolic angle αI share the same contour lines (i.e.

θ̇ = 0). Thus emphasizing that the non-orthogonality need be constant to yield a Hermitian
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Figure 3.8: Hyperbolic angle and y-axis. The angle θ is the angle from the state ρ to
the y-axis. αI is the hyperbolic angle. θ and αI are related through cos θ = tanhαI.

counterdiabatic drive. This can be seen from the Bloch coordinates expectation values:

z± = ∓ cosαr

√
1 − tanh2 αi,

x± = ∓ sinαr

√
1 − tanh2 αi,

y± = tanhαi.

(3.45)

From the overlap defined before, the transition probability between normalized eigenstates

is:

|⟨Λ−|Λ+⟩|2 =
|⟨R−|R+⟩|2

⟨R−|R−⟩⟨R+|R+⟩
= tanh2 αi. (3.46)

We see that θ ≡ arccos | tanhαI| where it can be visualized in Figure 3.8. The Bloch

coordinates from Eqs. (3.45) and the Figure 3.9 show how following one Apollonius circle

in parameter space is half a circle on Bloch space. In other words, for every coordinate in

parameter space, there are two associated points in Bloch space. Therefore, one parameter

loop brings |ψ⟩ → −|ψ⟩ and two loops brings |ψ⟩ → |ψ⟩.

These simplifications to our counterdiabatic Hamiltonian are possible due to an underlying

symmetry that our effective non-Hermitian Hamiltonian has called chiral symmetry. To show
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Figure 3.9: Parameter space and Bloch coordinate state space visualization. (a)
The parameter space. (b) Bloch coordinate space (Bloch sphere) with the exceptional points
±κ = ±JEP at the poles with the y-axis pointed up. The blue trace corresponds to encircling
the exceptional point in parameter space and corresponds to a half loop in Bloch space.

this symmetry, we shift the Hamiltonian so that it is traceless:

H ′ ≡ H − 1

2
Tr(H) Î , (3.47)

Γ̂H ′Γ̂ = −H ′, Γ̂2 = Î . (3.48)

(3.49)

The chiral symmetry operator is:

Γ̂ = R̂z(ϕ)σ̂zR̂
†
z(ϕ), (3.50)

and it performs the operation: Γ̂|λ±⟩ = ±i|λ∓⟩. This symmetry is what allows us to define

a complex mixing angle α = αR + iαI.

3.3.3 Counterdiabatic generalized to complex coupling

This subsection offers a brief extension of previous derivations and definitions to the complex

coupling case J = |J |eiϕ [80]. We can extend the definitions of the eigenstates |λ±⟩ Bloch

coordinates {x±, y±, z±} to the rotational and hyperbolic angles αR and αI . Since J is

complex we now consider a three-dimensional parameters space spanning (∆, Jx, Jy). What

was referred to as Apollonius circles is now thought of as Apollonius tori. The previous
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definition of α = arctan |J |
E

is independent of the phase ϕ. When ϕ is varied, it corresponded

to a rotation around the ∆ axis in the parameter space. Since each Apollonius circle is

defined by a constant αI , as ϕ is varied these circles sweep out a toroidal surface (like a

bagel).

Earlier we mentioned that parallel transport is not generally guaranteed. For ϕ ̸= 0, parallel

transport only occurs for ϕ̇ = 0. The eigenstates with nonzero ϕ are defined as:

|R±⟩ = R̂z(ϕ)Ĉy(α)|z±⟩. (3.51)

The transport operator that transports Eq. (3.51) from time t0 to t is now defined as:

T̂ (t, t0) ≡ R̂z(ϕt)Ĉy(αt)Ĉy(−αt0)R̂z(−ϕt0). (3.52)

The Berry connection for a time-dependent ϕ is now:

⟨λ̂±|∂tλ±⟩ = ±i ϕ̇
2

cosα. (3.53)

This is only zero when ϕ̇ = 0 or cosα = 0. The counterdiabatic drive can be derived from

this transport operator as:

Hcd = i
˙̂
T T̂−1 =

ϕ̇

2
σ̂z +

α̇

2
R̂z(ϕ)σ̂yR̂

†
z(ϕ). (3.54)

This shows that if we follow an Apollonius torus in parameter space, the anti-Hermitian part

is still zero when αI = constant. Even if parallel transport is not achieved, there are certain

conditions where the total phase along the path cancels out. When on an Apollonius torus

(αI = constant), if αR = ω and ϕ̇ = ν. When the path goes twice around the torus this

corresponds to a full closed loop in Bloch coordinate space.
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∫ t

t0

⟨λ̂±(s)|∂tλ±(s)⟩ ds = ± i

2

∫ t

t0

ν cosα(s) ds (3.55)

= ± iν

2ω

[
cosh(αi)

∫ αr(0)+2π

αr(0)

cosαrdαr

− i sinhαi

∫ αr(0)+2π

αr(0)

sinαr dαr

]
= 0

We can use the Berry connection to define a transport operator that parallel transports the

state:

T̂∥(t; t0) ≡ R̂z(ϕt)Ĉy(αt)R̂z(βt)Ĉy(−αt0)R̂z(−ϕt0)R̂z(−β0) (3.56)

where

β(t) = −
∫ t

t0

ϕ̇(s) cosα(s) ds. (3.57)

Using the previous method we can calculate the counterdiabatic Hamiltonian as:

H
∥
cd = iṪ∥T

−1
∥ =

ϕ̇

2
σ̂z +

α̇

2
R̂z(ϕ)σ̂yR̂

†
z(ϕ) − ϕ̇

2
cosα R̂z(ϕ)Ĉy(α)σ̂zĈ

−1
y (α)R̂†

z(ϕ). (3.58)

3.3.4 Exploring the effect of non-Hermitian components in the

counterdiabatic drive

The rest of this section will explore what happens if we proceed with applying a drive that

requires a significant anti-Hermitian component to maintain adiabatic dynamics [80]. The

parameters close to the previous path of r = 0.973 are ∆⟲ = Jmax = 30.3 rad/µs as shown

in Fig. 3.10a (solid gray circle). If we keep Jmin and Jmax constant but change the max

detuning to ∆⟲ = 0.7π rad/µs, we can analyze a loop that deviates from the Apollonius

circle (Fig. 3.10a pink line). Since each dashed gray line represents an Apollonius circle

with a different constant αI, we see that this new path crosses over many different ones.
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Therefore, the anti-Hermitian part of the counterdiabatic drive becomes non-negligible as

seen in Fig. 3.10b in the upper panel. Here we plot the anti-Hermitian component of HCD,

which is the real part of JCD, and see that especially at the center of the encircling loop

(around t = 0.1 µs) it deviates from 0 and becomes significant. In the lower panel in dark

green we plot the imaginary part of JCD which corresponds to the Hermitian drive. In

Figure 3.10c we show the result of driving with H̃cd. Here we see that the experimental

state deviates largely from the instantaneous eigenstates. We specifically see the deviation

of y from yI at the center of the drive. This is around the time when the anti-Hermitian

component Re[Jcd] has significant values, but is not (and cannot) be implemented. We can

quantify and verify this deviation in Fig. 3.10d with the trace distance measure (3.26). Here

the gray trace corresponds to the previous encircling which closely follows an Apollonius

circle and maintains a close distance D to the instantaneous eigenstates. Conversely, in the

pink trace we see large spikes at the center of the drive, and a general increase in D.

3.3.5 Resolving the Riemann sheet topology

So far we have demonstrated that counterdiabatic driving is able to remain on the Riemann

sheets close enough to pass through the branch cut and have eigenstate switching. Next

we will explore how sharply we can transition across the exceptional points to resolve this

branch cut by sweeping the value of Jmin. This will allow us to cross through three regions:

encircling zero EPs, one EP, two EPs. The relevant parameter that indicates state transfer

is the Pauli expectation value x = ⟨σx⟩ at the end of the parameter path xT = x(t = T ).

The experimental protocol from before is implemented with initial state |λ−⟩. Figure 3.11b

plots xT for T = 0.2 µs and Jmin varied from −1 to 1 rad/µs. The EP occurs at JEP =

±0.21 µs−1. The green trace represents driving without counterdiabtic parameters and we

see no indication of the state responding the the Riemann surface. The blue trace however

has a transition around JEP = ±0.21 µs−1. When the loop encircles zero or two EPs, we

see that xT ≈ −1 = ⟨λ−|σ̂x|λ−⟩. We began in the |λ−⟩ state and end approximately in that

state because the encircling did not pass through the branch cut. Visually, we began in the

red sheet and should remain on the red sheet (Fig. 3.11a). The yellow region corresponds to

encircling one EP. Previous encircling loops (Fig. 3.3(g,h)) showed us that this leads to a state

transfer. This behavior is verified within the EP dashed lines where xT ≈ +1 = ⟨x+|σ̂x|x+⟩.
We see that around the EP’s the response of x(T ) is not very steep for T = 0.2 µs. With
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Figure 3.10: Quantifying deviations from the Apollonius circle. (a) The complex
parameter space ε plotted with different Apollonius circle ratios r (gray circles). The solid
gray circle corresponds to an Apollonius circle with r = 0.973. The pink line corresponds to
a circle with the same J values but ∆⟲ = 0.7π. (b) The anti-Hermitian component H

(ah)
cd is

plotted as Re[Jcd] in purple in the upper panel. The Hermitian component H
(h)
cd is plotted

as Im[Jcd] in blue in the lower panel. (c) The encircling loop corresponding to the pink
trace is experimentally performed and the tomographic results are plotted {x, y, z}. The
corresponding instantaneous eigenstates are also plotted {xI, yI, zI}. (d) The trace distance
D is calculated for the gray and pink encircling loops to quantify the effect of missing
the anti-Hermitian drive components. The parameters at the time of this experiment were
γe = 1.85 µs−1 and γf = 0.2 µs−1.
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Figure 3.11: Resolving the Riemann sheet branch cut. (a) The three encircling regions
dependent on Jmin are plotted on the Riemann sheets. From left to right, encircling two EPs,
one EP, and zero EPs. (b,c) The final point of the Pauli expectation value xT plotted as
a function of Jmin from −1 to 1 rad/µs. The other encircling loop parameters are Jmax =
30 rad/µs and ∆⟳ = −10π rad/µs. The green traces correspond to driving with Heff and
the blue traces correspond to driving with Heff + H̃cd. Panel (b) is with T = 0.2 µs and
γ/4 = 0.21 µs−1. Panel (c) is with T = 1 µs and γ/4 = 0.39 µs−1.

a sampling rate of 1 GS/s, the minimum time resolution for drive parameter variations is 1

ns. In Fig. 3.11c we repeat the same experiment for T = 1 µs. Due to the dephasing rates

and decoherence effects, the contrast is lower than that of T = 0.2 µs. However, here we

observe sharp transitions at the EPs and similar behavior in the three regions of Jmin.

3.4 Hermitian counterdiabatic drive by way of single

eigenstate tracking

Another method to obtain Hermitian driving was derived by our theory collaborators from

University of Luxembourg, Niklas Hörnedal and Aurélia Chenu. The goal of staying on the
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instantaneous eigenstates can be reformulated as remaining in the subspace V (t) defined by

our initial eigenstate |λ±⟩. A unique linear map P (t) can be found that projects onto the

subspace formed by an eigenstate. This map has the properties:

P (t)2 = P (t), P (t)† = P (t), P (t)|ψ⟩ = |ψ⟩, |ψ⟩ ⇔ V (t) (3.59)

With eigenstates |λ⟩ the projector reads:

P =
|λ⟩⟨λ|
⟨λ|λ⟩

(3.60)

If initialized in an eigenstate with subspace V (0), the system will remain in that subspace

at a later time V (t) when driven with:

HCD(t) = i[Ṗ (t), P (t)] + 2i⟨λ|λ̇⟩P, (3.61)

This simplifies to:

HCD(t) = i(|λ̇⟩⟨λ| − |λ⟩⟨λ̇|). (3.62)

Using our previous eigenvalue definitions that are dependent on ∆ and J (Eq.(2.7)) we get:

HCD =

(
∆CD J∗

CD

JCD 0

)
, ∆CD =

i(λ̇λ∗ − λλ̇∗)

|λ|2 + J2
, JCD =

i(J̇λ∗ − Jλ̇∗)

|λ|2 + J2
. (3.63)

We can now follow the protocol from Sec. 3.3 and encircle the EP in both directions starting

from the |λ−⟩ eigenstate. The total drive parameters are extracted from Htot = Heff +HCD

and are plotted in Fig. 3.12(a,b). We see in Fig. 3.12b that the component corresponding to

the frequency detuning of the drive has a large spike in the center of the drive. Though this

peak occurs at ≈ 2000 rad/µs = 318.3 MHz, we don’t see obvious effects in the dynamics

of the system. The anharmonicity of this qubit is η ≈ 150 MHz. Thus, it is important

to verify with the addition of counterdiabatic controls that other energy transitions are not

being driven. Since this peak is narrow and away from the anharmonicity, we don’t see a

detrimental effect. The Pauli matrix expectation values are plotted in Fig. 3.12(c,d).
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Figure 3.12: Hermitian counterdiabatic drive from single eigenstate tracking. (a)
The total drive parameters from Htot = Heff + HCD are plotted as a function of time for
T = 0.2 µs. The drive is according to Eq. (2.26) with Jmax, Jmin, and |∆⟳,⟲| are all the
same as Fig. 3.3(a,b). Here we plot the total drive parameters as: Jx(t) = J(t) + Re[JCD(t)],
Jy(t) = Im[JCD(t)], and ∆tot(t) = ∆(t) + ∆CD(t). (c,d) Plot the Pauli expectation values
(solid lines) as a function of time for each encircling direction. The dashed lines represent
the Pauli expectation values of the instantaneous eigenstates.
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Figure 3.13: Single eigenstate tracking method experimental results. (a) The encir-
cling paths for the three different loop types. Pink is encircling two EPs, yellow is encircling
one EP, and black is encircling no EPs. (b) The final point of the x-tomography is plotted as
a function of Jmin. We see a sharp transition at the exceptional points from no state transfer
(pink and black) to state transfer in the yellow region. (c) The average trace distance D is
plotted for various loop times T . We see the same increase at short times due to the same
experimental limit.

We can explore the sensitivity to the EPs using the same sweep from before of Jmin from

Fig. 3.11. In this sweep the loop time was T = 1.5 µs. We prepare the system in |λ−⟩ where

x(0) = −1, and observe that the state returns to ≈ −1 in the pink and black regions where

we do not pass through a branch cut. In the yellow region we observe the increase of x > 0.

Due to the longer loop period, there is significant dephasing and decoherence taken place,

however the sharp behavior is still observed.

The efficacy of this method can be determined using the trace distance metric from earlier

Eq. (3.26). D is plotted as a function of loop time T in Fig. 3.13 where we observe similar

behavior to the counterdiabatic driving method from Sec. 3.3. The average remains much

lower than driving with Heff in shorter time scales.
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3.5 Conclusion

By identifying specific parameter paths called Apollonius circles that eliminate the non-

Hermitian components of the drive, we are able to extend the methods of counterdiabatic

driving to non-Hermitian systems. Allowing us to preserve and utilize the rich topology of

the energy landscape. Since the significant feature of the energy spectrum that allows this

eigenstate switch behavior is the branch cut, passing through it from one sheet to the other

is the priority. The actual path taken won’t determine the eigenstate switch topologically.

Path independent quantities such as the geometric phase (Berry phase) are preserved in

closed loops only. Therefore, these Apollonius circles provide flexibility in parameter space

and extend the applicability of these drives to non-Hermitian systems. The Berry phase

was first experimentally measured in a classical optical fiber [99]. In quantum systems the

Berry phase has been explored theoretically and measured [100, 101, 16, 102, 103, 104, 105,

106]. The method of shortcuts to adiabaticity was used to measure the Berry phase in

a superconducting phase qubit [107]. Geometric phases have potential uses in quantum

computation [108, 109]. In addition, it was recently demonstrated in an optomechanical

system that the Berry phase for a non-Hermitian system, which is complex, can provide

steady state amplification [110].

For systems where the non-Hermitian contributions cannot be minimized using Apollonius

paths, the second method introduced in Section 3.4 reduces the space to the single eigenstate

subspace and provides a Hermitian drive. For both of the drives, one must pay attention

to the limitations introduced by experimental apparatus. We showed that with small loop

times (T < 0.02 µs), the drive strength required by the counterdiabatic Hamiltonian exceeds

the apparatus limit. For the method described in Sec. 3.4, the counterdiabatic addition to

the detuning approaches and exceeds the anharmonicity. Though no effect is observed by

this, it is a limitation to look out for if the time spent driving in other frequency transitions

is significant.

Complex eigenvalues give us an elegant way to dynamically and smoothly tune our param-

eters such that we switch between states of our system. Previously thought of as discrete

states that we can “jump” between now become continuous in their real and imaginary com-

ponents. Complex energies not only provide physically observable dynamics in the quantum

state, but also a rich topology that we are able to preserve with STA. The efficacy of these
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counterdiabatic drives on a non-Hermitian system have been shown for a second order ex-

ceptional point (EP2). One can extend the concept of encircling to higher order exceptional

points [53, 111, 112]. These higher order EPs have benefits such as an increase in sensitiv-

ity [75] or speed up of entanglement [24]. This can be extended to our setup by including

more energy levels and due to the anharmonicity, we can continue to apply separate drives

to each energy transition. We can write out a Hamiltonian that is n× n (previously it was

2 × 2). For example, by including the |h⟩ state, the drive frequencies and strengths of each

energy transition denoted by ∆ij, Jij, we can write [53]:

Heff =

−iγ/2 + ∆ef J∗
ge 0

Jge ∆fh J∗
fh

0 Jfh 0

 (3.64)

This matrix has the property of third-order exceptional points (EP3) and second-order ex-

ceptional lines (EP2). For methods on how to derive these higher-order exceptional points

and lines, refer to [111, 53]. When we are able to identify these EPs, we can explore different

encircling paths. This gives rise to non-trivial braiding among eigenstates that correspond

to braid groups. Now that we have demonstrated experimentally feasible ways to control the

non-Hermitian system according to its Riemann topology, future research in this field would

be to extend the counterdiabatic drives to encircling the higher-order exceptional points.
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Chapter 4

Thermodynamics in quantum systems

We have so far been exploring the limits of controlling a non-Hermitian system due to

loss and observing the features of the Riemann topology due to the complex spectrum.

This next chapter will explore the role of the non-Hermitian Hamiltonian and its complex

energy spectrum as they pertain to heat and work in thermodynamics. In Section 4.1,

we define the first and second laws of thermodynamics which are well understood in large

systems. The second law of thermodynamics in particular has different forms depending on

the process being analyzed. In Section 4.2, we show how, when the system size is reduced and

systems are driven in a non-equilibrium manner, the laws of thermodynamics can be applied

using fluctuation theorems. We also develop a protocol to measure the work probability

distribution to calculate a specific fluctuation theorem: the Jarzynski equality [44]. In

Section 4.3, we apply this protocol to the qubit with various closed-loop parameter variations

that explore the complex eigenvalue space. In Section 4.4, we extend this protocol to non-

cyclic paths in simulation. The results described in the last two sections were published

in [80].

4.1 The first and second laws of thermodynamics

As we saw in Chapter 2, non-Hermitian systems can arise from open quantum systems. Thus,

a natural connection to a system coupled to an environment is thermodynamics which studies

and constrains the processes that can occur between the two. Through thermodynamics,

we have measurable and well-defined variables available to us: internal energy U , work

applied to the system W , heat transferred to the system Q, entropy of the system S, and

temperature of the system (reservoir) T . The values of these energy exchanges and extrinsic

and intrinsic properties are governed by the first and second laws of thermodynamics. The

first law requires conservation of energy, while the second law limits how we use energy [113].
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Figure 4.1: First Law of thermodynamics. The internal energy of a system, U , is changed
by work W applied to the system and heat Q transferred between the system and reservoir.

The first law of thermodynamics can be written as:

∆U = W +Q. (4.1)

Where ∆U is the change in internal energy of the system and is a state function, therefore

path independent. The sign of these measurements indicate whether it is going into (+)

or out of (−) the system. Figure 4.1 schematically shows how interactions between system

and reservoir can change the internal energy of the system. This law constrains the possible

changes on a system’s internal energy, whether deliberate or not and tells us that energy

cannot be created nor destroyed.

The second law of thermodynamics has different forms of expression depending on the con-

cept and process to be analyzed. Ultimately, it constrains energy conversion and limits the

directionality of events. A useful equation of entropy, the Clausius relation, relates infinites-

imal changes in heat: dS = δQ/T . Integrating this expression gives us the entropy change

between two equilibrium states ∆S =
∫ f

i
dQ/T . The Clausius relation is for a reversible

process, but since ∆S is a change in state property, it can also give ∆S for an irreversible

process. Motivated by engineering challenges in engine design, early formulators of thermo-

dynamics had discovered the limits of certain processes. There are two equivalent statements

of the second law. First, the Clausius statement which often applies to refrigeration heat

flow and was stated as: “It is impossible to construct a device which operates on a cycle and

whose sole effect is the transfer of heat from a cooler body to a hotter body.” Secondly, the

Kelvin-Planck statement says: “No process is possible whose sole result is the absorption of

heat from a reservoir and the conversion of this heat into work.” [113]. It is essentially stating

that no process can perfectly produce work obtained from heat from a cooling reservoir. The

theoretical maximum of this efficiency is η = 1 − QC

QH
= 1 − TC

TH
. This efficiency was derived

from a Carnot engine in which an engine operates between two reservoirs, one hot and one
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cold. For the Carnot engine to be 100% efficient, TC = 0. However, we cannot achieve this

temperature in nature, therefore a heat engine with 100% efficiency is not possible [113].

The formulation of the second law most useful to this research is:

∆F ≤ W (4.2)

This inequality holds for non-equilibrium processes and states that the amount of work

done, on average, must be greater than the free energy difference ∆F ≡ Ff − Fi. Here, the

free energy is defined as the Helmholtz free energy. This energy is the type of useful work

obtainable from a closed thermodynamic system at constant temperature (isothermal). The

equality holds when the parameters of the system are changed quasi-statically such that the

total work performed on the system is equal to the Helmholtz free energy and the process is

reversible. If the parameters are changed at a finite rate, then the work is on average greater

than ∆F since the system doesn’t have time to equilibrate after each change. Therefore,

Wdiss = W − ∆F represents the dissipated irreversible work.

These laws have been extensively studied for large systems (N −→ ∞). Since any particle

interactions and behaviors are averaged out over the whole system, measurements like pres-

sure, temperature, and volume are well defined. Consider the classic example of an ideal gas

in a box (Fig. 4.2a). The combination of microstates, Ω (possible particle arrangements),

that give us the most probable macrostate (macroscopic description) tends towards the par-

ticles being evenly spread out across the box. This is the configuration with the highest

entropy where: S = kB ln Ω and kB is the Boltzmann constant. In other words, if we were to

imagine splitting the box in half, an overwhelming number of microstates would have (N/2)

on each side.

Now imagine adding a movable wall as pictured in Figure 4.2b. As the wall is slowly pulled

outwards, the volume is increased and the gas particles spread apart, decreasing the pressure.

There is work applied to the slowly moving wall by the air particles to always stay near

equilibrium and heat added to maintain the internal energy ∆U = 0 = −W +Q. The work

can be written as: W =
∫
PdV (dW = PdV ) [114]. Using the ideal gas law, PV = NkBT

and the fact that dW = dQ, we can then plug this into the earlier equation and obtain:

∆S =
∫ f

i
dQ/T = NkB ln 2. The entropy increases because the particles are overwhelmingly
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Figure 4.2: Particles in a box. (a) N → ∞ number of particles in a box will be most
likely distributed evenly due to the entropy being maximized (light pink particles). The
number of microstates Ω that represent the macrostate of N/2 particles on each side is
largest. Splitting the box in half (solid black wall) and measuring the number of particles
will most likely yield N/2 on each side. Next, all the gas is on one side (dark pink particles)
and settled at equilibrium with a movable wall (solid black wall). If the wall is slowly moved
to the right to a new volume Vf = 2Vi, the gas will expand to fill the new size. The work and
heat are well defined and measurable parameters of the system. The entropy change ∆S can
be calculated assuming the quasi-static expansion and the ideal gas law PV = NkBT . If the
particle number is lowered to a few particles, the fluctuations in measured pressure against
the wall will yield different entropy values in each repetition. We can further decrease our
system to a single particle in a box of length L. (b) The wall of the box can still be moved
but now instead of measuring volume V , we are affecting the energy spacing of the wave
functions. The spacing between energy levels is ∝ 1/L2.

more likely to be found distributed throughout the larger volume than concentrated in the

smaller region, making spontaneous return to the initial state virtually impossible.

4.2 Fluctuation theorems

The irreversibility described by the second law of thermodynamics seemed to contradict the

reversible dynamics allowed by equations of motion in microscopic systems. As the particle

number is decreased and we consider a smaller system, the individual statistical fluctuations

begin to affect measurements [115]. If we measure the number of particles on each side of the

box multiple times, we will not always measure N/2 on each. Similarly, if you have a single

to a few particles bouncing off of the wall, it will measure different pressures and volumes

at different times. If the moving wall example is repeated multiple times the work and heat

transferred to keep constant temperature will be different each time due to the microscopic
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dynamics of the particles, such that we can see probabilistic violations of the second law due

to fluctuations. Another aspect that is commonly encountered are systems out of equilibrium.

If the wall is abruptly pulled outwards and pushed inwards to return to the initial position,

the system is out of equilibrium and the work done on the system is W > 0. For small

systems and many repeated measurements, we find on average ⟨W ⟩ > 0. This implies that

on occasion, we may measure negative work [116]. The following sections will aim to show

that the second law is a probabilistic law that emerges from statistical mechanics—one that

is observed and verified in nature due to the enormous number of particles and accessible

microstates in macroscopic systems. In 1993, Evans and Searles [115] addressed this concern

of violations of the second law in systems that begin in equilibrium but end in a steady

state far from equilibrium using numerical simulations. They concluded that temporary

violations occurred at the microscopic level, but the probability of such violations decreased

over time [117, 118]. That is, for a trajectory that has a positive entropy production, the

time-reversed trajectory that has a negative entropy production (and violates the second

law) becomes exponentially less likely as time t → ∞. In 1995, Gallavotti and Cohen

derived a fluctuation theorem in terms of asymmetry between entropy production in the

forward and reverse paths for thermostatted steady-state systems out of equilibrium and

with assumptions of chaoticity [119]. Where A is an entropy production rate and t is time,

these earlier fluctuation theorems had a form similar to:

P (A)

P (−A)
= e−At. (4.3)

This ratio shows that positive entropy production is exponentially more likely than negative

in the limit of t → ∞. It also shows that while there may be individual violations, the

probability distribution follows a certain symmetry. This theorem was then further explored

in stochastic dynamics [120, 121, 122]. These theorems, valid for systems driven arbitrarily

away from equilibrium, showed that for longer timescales or averages, the expected second

law behavior is recovered [123].

In a similar vein to the earlier fluctuation theorems, the Crooks fluctuation theorem re-

lates the probability distributions of the entropy production for the forward process PF and

reversed PR in a driven system [124]

57



PF(+S)

PR(−S)
= eS. (4.4)

These relations both describe driven systems whereas the Gallavotti-Cohen theorem is about

steady-state driven systems and the Crooks theorem is for time-dependent processes and

microscopically reversible dynamics. The previous example from Fig. 4.2b is useful to un-

derstand this relation. The gas in the box starts at a certain volume at equilibrium. As the

wall is pushed in at a certain rate, the gas compresses and stops at a new volume. Now if the

wall is pulled outwards at the same rate, we obtain the reverse (R) process. If these processes

are repeated multiple times, the probability distributions (PF,R) satisfy this relation. A great

result of this relation is that it is valid for any rate and particle limit. We can connect this

to the earlier form of the second law (Eq (4.2)) and Kelvin-Planck statement using [116]:

−⟨W ⟩R ≤ ∆F ≤ ⟨W ⟩F , (4.5)

⟨W ⟩R + ⟨W ⟩F ≥ 0 (4.6)

Fluctuation theorems were subsequently verified experimentally in classical microscopic sys-

tems on platforms such as molecules, turbulent flow, and a classical two-state single-electron

box [125, 126, 127, 128, 129, 130, 131, 132, 133].

4.2.1 The Jarzynski equality

These fluctuation theorems have been useful to understand systems driven far from equi-

librium and their entropy production. When we consider experiments on qubits where we

apply sequences of pulses and Hamiltonian variations, the speeds and strength at which

they occur can bring our system out of equilibrium. Thus it is important to consider how

to further extend fluctuation theorems to the measurements we make on quantum systems

with fast, non-equilibrium dynamics. In 1997, Jarzynski derived a relation for measure-

ments of the work on a system in a non-equilibrium process to its equilibrium free energy

change [44, 116, 134]
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⟨e−βW ⟩ =
Z(T )

Z(0)
≡ e−β∆F (4.7)

where Z(t) is called the partition function and is defined as Z(t) ≡ Tr[e−βH(t)] and β ≡ 1
kBT

is the inverse temperature. The brackets denote an ensemble average taken over many

repeated measurements. Eq. (4.7) holds for arbitrary non-equilibrium paths taken between

two equilibrium, measurable states of the system. The result of this equality is that many

measurements on a system that is in non-equilibrium give us information on its equilibrium

state due to the underlying information in the fluctuations of work. Eq. (4.7) is an extended

case of Eq. (4.2) which can be recovered using Jensen’s inequality. Jensen’s inequality states

that for any convex function: ⟨g(x)⟩ ≥ g(⟨x⟩). We can check that our function is convex and

apply the rule:

∂2

∂W 2
e−βW = β2e−βW > 0, (4.8)

Since e−βW is convex, Jensen’s inequality gives us:

⟨e−βW ⟩ ≥ e⟨−βW ⟩, (4.9)

Taking the natural logarithm of the Jarzynski equality:

ln⟨e−βW ⟩ = −β∆F, (4.10)

Combining equations (4.9) and (4.10):

−β∆F ≥ ⟨−βW ⟩, (4.11)

∴ ∆F ≤ ⟨W ⟩. (4.12)

Since the Jarzynski equality (4.7) and the previous notations (Eqs (4.2),(4.6)) refer to the

average of the work measurements but the Crooks relation concerns the probability distribu-

tion of these fluctuations, it can thus be useful to see the relationship as follows. The Crooks
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relation (4.4) can be modified to look like the Jarznyski equality [124] with the following

steps.

⟨e−S⟩ =

∫ −∞

−∞
PF(+S)e−SdS =

∫ −∞

−∞
PR(−S)dS = 1, (4.13)

where we average over the probability distributions. For systems that start in equilibrium

S = −β∆F + βW :

⟨e−(−β∆F+βW )⟩ = 1, (4.14)

Since ∆F is a state function, we can pull it out of the average:

eβ∆F ⟨e−βW ⟩ = 1 (4.15)

∴ ⟨e−βW ⟩ = e−β∆F . (4.16)

The Jarzynski equality has been verified first in classical systems [135, 125, 136, 137, 138,

130], then extended to quantum systems [139, 140, 141, 142, 143, 144, 145]. For systems

described by a similar Hamiltonian as our qubit, there have been predicted violations when

the spectrum of the non-Hermitian Hamiltonian, Heff , turns complex [146, 147, 148, 149,

150, 151]. The following sections will show how we apply certain measurement protocols to

best understand how measurements of a dissipative non-Hermitian system are related to its

dynamics.

4.2.2 Energy distribution and measurements

In Figure 4.2, we further reduce the system size to a single particle. We can plot the wave-

functions of a single particle in a box of length L, particle mass m, mode number n (up

to n = 3), and Planck’s constant h. The energy spacing between these wave functions

(Fig. 4.2b), are inverse quadratically dependent on the length of the box En = n2h2

8mL2 . There-

fore, moving the wall inwards and outwards changes the energy levels. The internal energy

change of this system after performing the work to change the size of the box is related to

60



∆U = En(L2) − En(L1). In quantum systems, the relevant descriptors are the Hamiltonian

and the density matrix (qubit state). In a closed quantum system the Hermitian Hamil-

tonian, H(t) with eigenvalues H|λ⟩ = λ|λ⟩, has the role of the internal energy operator

U(t) ≡ Tr[ρ(t)H(t)] and generator of its time dynamics, Ĝ(t) = e−iHt. Our qubit energy

levels are distributed similarly to the particle in a box. However, instead of changing the

length of the box to apply work, we can change the values in our Hamiltonian H(t), such as

drive strength J and detuning ∆, to change the spacing between our eigenvalues.

To quantify the internal energy change in a quantum system, ∆U , it is common to employ the

“two-point projective measurement” (TPM) protocol [152, 153, 154]. Projectively measuring

a qubit obtains one of it’s eigenstates and leaves the qubit in the associated eigenstate.

Therefore, performing a measurement in the beginning and end of an experiment will give

you the initial and final energy states in terms of transition probabilities Pij. Where j is the

initial state and i is the final state, Pij refers to the probability of measuring in state i given

the system started in state j : P (i|j). This gives us an internal energy distribution P (∆U):

P (∆U) =
∑

i,j=±x

PijPjδ(∆U − (∆λ)) (4.17)

Therefore, the probability of measuring λj(0) and λi(T ) is P (j ∩ i) = P (i|j)Pj. The initial

probability of measuring the eigenvalue in a Gibbs state [154]:

e−βH(0)

Z(0)
→ Pj =

e−βλj(0)

Z(0)
. (4.18)

When this protocol is applied to a closed quantum system, Q = 0, this becomes the proba-

bility distribution of the work, P (W ).

In a Hermitian system, we experimentally measure with our right eigenvector projectors

(Sec. 2.1.2):

Πn = |n⟩⟨n| (4.19)
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Where |n⟩ is our measurement energy basis. Focusing on measuring the eigenstates of the

Hamiltonian, we can look at that cases where |n⟩ ∈ |±x⟩. The system is prepared in

some pure state |ψ(0)⟩ = |j⟩, where j ∈ |±x⟩ and evolved for a time t. The evolved

state is now in some combination of |ψ(t)⟩ = α|+x⟩ + β|−x⟩. Now if we want to find the

transition probability from initial state j to some final state i ∈ |±x⟩, we can make separate

measurements in the respective basis.

p+xj = |α|2 = ⟨ψ(t)|Π+|ψ(t)⟩ (4.20)

p−xj = |β|2 = ⟨ψ(t)|Π−|ψ(t)⟩ (4.21)

Since a single measurement will project the state ψ(t) into one of the measurement states

|±x⟩, we obtain a 0 or a 1. Therefore, we repeat this measurement N times and calculate

the ratio:

P±xj =

∑
N p±xj

N
(4.22)

An important property to note is that P+xj + P−xj = 1.

In non-Hermitian systems, we encounter imaginary terms. While these terms have a signifi-

cant and observable affect on time evolution, we can only measure real values in experiment.

Therefore, the following experiments are performed with the projective measurements in the

TPM protocol in the Hermitian (real eigenvalue) basis [155].

To connect the TPM protocol from subsection 4.2.2 to our non-Hermitian qubit, we have a

sequence of pulses and drives (Fig. 4.5a). The projective measurements will be made such

that we obtain ∆U in the |e⟩ − |f⟩ manifold. Our sequence begins with preparing our qubit

in one of the eigenstates of its initial Hamiltonian H(0) = Jσx, | ± x⟩ = (|f⟩ + |e⟩)/2 by

applying a π rotation to bring it to the |e⟩ state and a π/2 rotation to the |±x⟩ state. We

synthesize an initial Gibbs state with P± = e∓βJmax . β = 0.5µs−1 for all of these experiments.

We then evolve Heff(t) according to J(t) and ∆(t) (Eqs. (4.25), (4.26) and (4.27)). We then

perform state tomography rotations for a final projective measurement in our energy basis
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|g⟩, |+x⟩, |−x⟩.
pm = Tr[Πmρ] = ⟨m|ρ|m⟩ (4.23)

where m ∈ |g⟩, |+x⟩, |−x⟩. To extend the probability distribution to our non-Hermitian

system, we define the following relationship to transition probabilities due to post-selection:

Pij(T ) =
|⟨i|G(T )|j⟩|2

⟨j|G†(T )G(T )|j⟩
=

pij
p+x,j + p−x,j

(4.24)

On the right hand side, we have pij which is one of the following: pg,j, p+x,j, p−x,j. We

obtain these by applying a pulse that rotates |+x⟩ to the |f⟩ state and |−x⟩ to the |e⟩
state. Therefore, when we perform 3-state readout, we can threshold our data to obtain

pg, p+x, p−x (given it started in j). Because post selection is norm preserving, we have the

property
∑

i Pij(T ) = 1 (Fig. 4.5b). The four possible eigenstate transitions we can measure

are depicted in Figure 4.5a’s upper panel. The non-unitary evolution operator is defined as

G(T ) = T exp
[
−i
∫ T

0
Heff(t′)dt′

]
. Since we are driving a closed loop, we can also define a

Floquet Hamiltonian defined as G(T ) ≡ exp(−iTHF
eff), where HF

eff ≡ HF + iΓF and HF is

the Floquet internal energy operator.

4.3 Results

As discussed in Chapter 2, the non-Hermitian Hamiltonian obeys different properties based

on its parameters: non-Hermiticity, PT -symmetry, and broken PT -symmetry. In this next

section, we will start to explore the consequences of these different regions [155]. For sim-

plicity, the experimental paths we take will be a closed loop. Since our initial and final

Hamiltonians will be the same, Heff(0) = Heff(T ), it follows that, Z(T )
Z(0)

= 1. This is analo-

gous to the box example of changing the size of the box but returning it to the initial size.

We will prepare our system in some initial quantum state ρeq, evolve it according to the

system Hamiltonian, Heff , and then perform a projective energy measurement for its final

state (Fig. 4.3). The Hamiltonian will be varied according to the following parameter paths

visualized in Figure 4.4:
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Figure 4.3: General protocol for the experiment. We prepare the quantum system (S)
in an initial equilibrium state ρeq. This quantum system is a subset of a larger environment
to which it is coupled to as a reservoir (R). We perform two projective measurements at
time = 0 and at time = T in the energy basis of H. The system is evolved over time
according to Heff(t) with H(0) = H(T ). The various states of the initial system experience
the Hamiltonian variation in different ways which we will observe through the projective
energy measurements and using the Jarzynski equality (4.7) as a metric.

J(t) = J̄ +
(Jmax − Jmin)

2
cos

(
2πt

T

)
, ∆(t) = 0 (4.25)

∆1(t) = ∆max sin

(
πt

T

)
, J(t) = Jmax (4.26)

∆2(t) = ∆max sin

(
2πt

T

)
, J(t) = Jmax, (4.27)

where T is the duration of the loop and J̄ = (Jmax + Jmin)/2. By utilizing the minima and

maxima of these equations, we can explore different parameter regimes of our Hamiltonian,

Heff .

We repeat this measurement sequence with a range of loop times 0.1 µs ≤ T ≤ 1 µs. In

Fig 4.6a, we start out with the simplest case of constant J(t) and ∆(t). We have Jmax =

Jmin = 3.74 rad/µs and ∆max = 0 in the PT -symmetric regime. Here, we see that the

transition probabilities are symmetric. What this means is that the probability of staying

or transitioning to the other state is the same for both eigenstates. In Fig. 4.6b, we run the

same loops but with ∆max = 10π rad/µs. Having a non-zero ∆max breaks our explicit PT
symmetry. However, in this plot, we now see that the symmetry of surviving in/transitioning

out of a state is broken between initial eigenstates (P++ ̸= P−−/P−+ ̸= P+−). The reasoning
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EP

Figure 4.4: Parameter paths. We will explore three different path types J(t) (4.25)
(orange), ∆1(t) (4.26) (blue), and ∆2(t) (4.27) (green). J(t) begins at some Jmax and is
varied to a Jmin and back to the maximum. ∆1(t) has a constant J(t) = Jmax and begins at
∆ = 0 and is varied up to a ∆max and back down to 0. The third path, ∆2(t), is a symmetric
loop about the x-axis. It also has a constant J(t) = Jmax and begins at 0, but is varied up
to a maximum ∆max, down to −∆max, and then ends at 0.

1

0

Figure 4.5: Obtaining the work probability distribution. (a) The experimental se-
quence to realize TPM, post-selection and the variation of parameters. First we prepare an
eigenstate of H(t), |±x⟩ = (|f⟩±|e⟩)/

√
2, by applying resonant rotation pulses Rπ

ge and R
π/2
ef,θ

(where θ = π for |+x⟩ or 0 for |−x⟩). We then tune the parameters of H(t) for a certain time

T and returning it to its initial value H(T ) = H(0). Finally, we apply a final R
π/2
ef,θ rotation

and post-selective quantum state tomography. (b) By repeating each preparation sequence
3000 times and post-selecting, we sample both initial states |j⟩ ∈ {|+x⟩, |−x⟩} and obtain
the transition probabilities Pij within the excited-state manifold {|e⟩, |f⟩}.

65



(a) (b)1.0

0.8

0.6

0.4

0.2

0.0
1.00.80.60.40.21.00.80.60.40.2

Figure 4.6: Transition probabilities. Transition probabilities Pij(T ) for loop times ranging
between 0.1 µs ≤ T ≤ 1 µs. (a) Eq. (4.25) with Jmax = Jmin = 3.74 rad/µs and Eq. (4.26)
∆max = 0. (b) with the same Eq. (4.25) but Eq. (4.26) ∆max = 10π rad/µs.

for this will be discussed later in Section 4.5. How will these symmetries and asymmetries

affect the internal energy distribution used in the Jarzynski equality (4.7)?

We can expand the left-hand side of Eq. (4.7) into the probability distribution that represents

its ensemble average:

⟨e−β∆U⟩(T ) =
∑
ij=±x

e−β(Jmax,i−Jmax,j)Pij(T )Pj, (4.28)

where Pij are the experimentally obtained transition probabilities. Since we are driving our

system with closed loops where ∆(0) = ∆(t) = 0, our initial and final eigenstate energies

depend only on Jmax. In the previous section we measured transition probabilities that give

us our internal energy distribution. With a synthesized Gibbs state with inverse temperature

β = 0.5 µs/rad, we have initial probabilities of P±x = {0.98, 0.02}. With all the pieces of

the equation, we can now plug them into Eq. (4.28).

All of the figures in Fig. 4.7 include an inset of the path taken with J(t) and ∆(t). The

positive EP is plotted at JEP = +γ/4. Though these parameter drives can be done similarly

when reflected about the y-axis (with JEP = −γ/4). Figure 4.7a displays Eq. (4.28) for the

transition probabilities obtained in Fig. 4.6a in the red trace. The black trace corresponds

to Jmax = Jmin = 1.89 rad/µs. Here we see that the LHS (4.28) is equal to 1 as we expected

from the RHS (Z(T )
Z(0)

= 1). Thus, our TPM measurements calculated ∆U = W . In Fig. 4.7b

we have Jmin = 0.5Jmax so the path is varied but confined to the PT symmetric region
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Figure 4.7: Jarzynski equality evaluated for different paths. Eq. (4.28) evaluated at
T after evolving with Heff(t) (solid lines) along with the corresponding simulations (dashed
lines). The parameter path taken is displayed in the inset with the EP placed at JEP = γ/4.
(a)-(d) ∆max = 0 and J(t) (4.25) is varied with Jmax = 3.74 rad/µs (red trace) or Jmax =
1.89 rad/µs (black trace). These paths all satisfy (4.7). (a) Is the static case in the PT
symmetric regime with Jmax = Jmin. (b) Is a path varied within the PT symmetric regime
with Jmin = 0.5Jmax. (c) Begins in the PT symmetric regime and goes down to Jmin = 0 in
the broken regime. (d) Begins in the PT symmetric broken regime at Jmin = 0.04 rad/µs and
is varied through the EP and back. (e),(f) In these loops, PT symmetry is explicitly broken
with the path ∆1(t) (4.26) where ∆max = ∓10π rad/µs (red trace) and ∆max = ∓2π rad/µs
(black trace) and Jmax = 3.74 rad/µs for all. (4.7) is not satisfied.
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(where 0.5Jmax > JEP). In Fig. 4.7c we cross the EP into the broken PT symmetric region

until Jmin = 0. In Fig. 4.7d we begin at J = 0.04 rad/µs and reach the maximum at

Jmax = 3.74 rad/µs (red trace) and Jmax = 1.89 rad/µs (black trace). Similarly, in Figs. 4.7b-

d, we observe ⟨e−βW ⟩ ≃ 1. What these first four paths have in common is that Heff obeys an

explicit PT symmetry, thus ensuring real or complex-conjugate eigenvalues throughout the

evolution (Fig. 2.4). This provides us with a balanced gain and loss between eigenstates.

Figure 4.7e and f correspond to single sided loops where ∆max(t) ̸= 0 in Eq. (4.26). Figure 4.7f

displays Eq. (4.28) for the transition probabilities obtained in Fig. 4.6b in the red trace. The

asymmetry in the transition probabilities has manifested as a violation in the Jarzynski

equality ((4.7)). In these loops Heff(t) does not obey PT symmetry. Therefore, we see that

⟨e−β∆U⟩ ≠ 1 over different loop times T . In these cases Q ̸= 0, so our TPM protocol gives

us ∆U = W +Q.

The final case we explore experimentally are those with loops in Eq. (4.27). This is an

interesting case in which Heff(t) does not explicitly obey PT symmetry, however the Floquet

energy operator, HF does at certain loop times. We can begin with a similar analysis as

before by looking at the transition probabilities. In Fig. 4.8a we see that the symmetry

between state survival or transition is recovered at two points, T1 = 0.455 and T2 = 0.572 µs.

We look at this by taking the difference between the survival probabilities ∆P (T ) = P++ −
P−− (brown) and transition probabilities ∆P (T ) = P+−−P−+ (orange). The curved dashed

line is simulation and the straight line at 0 indicates when the probabilities are symmetric.

This experiment was performed with the parameters along the red line on Fig. 4.8b. Here,

∆max is swept from 0 to 20π rad/µs and loop time T from 0 to 2 µs. The black dashed

contours correspond to when ⟨e−βW ⟩ = 1. In Fig. 4.8c we evaluate (4.28) with these transition

probabilities. Fig. 4.8d provides a zoomed in view taken with more points to resolve the

notable region better. Indeed we see that ⟨eβW ⟩ = 1 at T1 and T2. These two spots correspond

to loops with emergent PT symmetry where HF
eff is PT symmetric. The balanced gain and

loss throughout the loop is recovered, and Qnet = 0.

4.4 Numerical simulations exploring non-cyclic paths

The Floquet analysis allowed validation for a group of closed loops that wouldn’t have

initially intuitively validated the Jarzynski equality with the TPM protocol. To further
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Figure 4.8: Emergent parity-time symmetry. The Hamiltonian Heff(t) is varied ac-
cording to ∆2(t) which is symmetric about the x-axis and Jmax = Jmin = 3.74 rad/µs. (a)
The difference of the transition probabilities is plotted as a function of loop time T for
∆max = 10π rad/µs. ∆P (T ) = P++ − P−− (brown) and ∆P (T ) = P+− − P−+ (orange) are
nonzero except at loop times T1 = 0.455 µs and T2 = 0.572 µs (b) Eq. (4.28) evaluated in
simulation while changing ∆max and loop time T in ∆2(t). The black dashed lines correspond
to where ⟨e−βW ⟩ = 1 and where HF is in the same basis as H(0). The red line corresponds
to the loop taken for (a) and (c). (c) The Jarzynski equality is evaluated with the TPM
results. Zooming into the region around T = 0.5 µs, we see that it crosses the e−β∆F = 1
line at T1 and T2. ∆max (rad/µs)
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Figure 4.9: Jarzynski equality evaluated for non-cyclic paths. ⟨e−βW ⟩ and ⟨e−β∆F ⟩
plotted at various periods T for four different paths (i)-(iv) where Z(0) ̸= Z(T ). (i) J is
varied linearly from Jmax = 3.74 rad/µs down to Jmin = Jmax/2 with ∆max = 0 (dark blue).
(ii) The same path as (i) but with Jmin = Jmax/4 (black). (iii) ∆max = 10π rad/µs but same
J(t) as (i) (red). The final case (iv) varies ∆max from 6π rad/µs to 10π rad/µs (light blue).
The solid lines correspond to the RHS of (4.7) and the markers to the LHS of (4.7).

extend the applicability of this protocol, this section will show simulation results of paths

where H(0) ̸= H(T ) [155]. Figure 4.9 shows four different paths. (i) In the PT symmetric

regime, with Jmax = 3.74 rad/µs, Jmin = Jmax/2, ∆max = 0 (dark blue). (ii) The same path

as (i) but with Jmin = Jmax/4 (black). (iii) Is in a region where Heff(t) does not obey PT
symmetry with ∆max = 10π rad/µs but same J(t) as (i) (red). The final case (iv) also breaks

the PT symmetry, varying ∆max from 6π rad/µs to 10π rad/µs (light blue). All of the solid

lines correspond to the RHS of (4.7). For the paths in (i) and (ii) where the initial and final

energy basis states are the same [H(0), H(T )] = 0, the equality (4.7) is satisfied. For (iii)

and (iv), [H(0), H(T )] ̸= 0, and the equality (4.7) is not satisfied

4.5 Conclusion - discussion of net heat

In this section, we will connect our experimental results back to the initial discussion of the

first law, which states that energy cannot be created or destroyed, and PT symmetry, which

defines the condition where the total energy flux equals zero, even if there is gain and loss

within a system. Given that we are using the TPM protocol in an open quantum system, we
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are obtaining ∆U [34, 36, 35, 40, 41, 42]. Previous explorations of applying the TPM in non-

Hermitian systems obeying PT symmetry had found violations of the Jarzynski equality.

However, this is due to previous notions that the effective non-Hermitian Hamiltonian also

represents allowed energies [146, 147, 148, 149, 150, 151]. In our protocol, we split the

responsibilities of the Hamiltonian Heff such that the Hermitian part serves as our projective

measurement basis H(t) while the full Hamiltonian governs the time-dependent dynamics

G(T ) = T exp
[
−i
∫ T

0
Heff(t′)dt′

]
. As we saw earlier in Chapter 2, the loss in our system

is due to decay from |e⟩ → |g⟩ in the form of −iγ/2|e⟩⟨e|. When we extract an overall

background loss term −iγ/4I, we are left with +iγ/4|f⟩⟨f | (gain) and −iγ/4|e⟩⟨e| (loss). In

quantum systems, we quantify our energies through populations/probabilities of the energy

states. Therefore, we can think of this as balanced heat flow in and out of the eigenstates,

Qnet = 0, and the net probability flux is zero (Sec. 2.2). Our protocol applied work to

our system by varying the Hamiltonian parameters as a function of time. In the cases

with violations, the heat in our measurement comes in the form of irreversible ”classical”

heat [42, 156]. These cases are those where PT symmetry is explicitly (and in the Floquet

picture) broken. This results in an imbalance of loss among the eigenstates over the loop

because they are not complex conjugates of each other, as was demonstrated in the survival

and transition probabilities of Fig. 4.6b. The imaginary component corresponds to relative

gain/loss, which is a result of the non-Hermitian Hamiltonian.
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Chapter 5

Conclusions and Future Directions

In this thesis, we were able to better understand and harness the complex energy spectrum

resulting from our non-Hermitian Hamiltonian. While many protocols, such as counterdia-

batic driving and the two-projective measurement protocol (TPM), were originally derived

for Hermitian systems, we were able to extend them to non-Hermitian ones in Chapters 3

and 4. In Chapter 2, we built out the math underlying the non-Hermitian Hamiltonian and

discussed what to expect from experimental measurements, followed by observing the EP

transition and encircling of this EP. The resulting breakdown in adiabaticity, which caused

non-adiabatic transitions and loss at longer times, motivated the exploration of shortcuts

to adiabaticity (STA) in the next Chapter. In Chapter 3, we were able to explore in depth

the consequences of non-orthogonality of our eigenstates and found encircling paths called

Apollonius circles that provided a Hermitian counterdiabatic drive, with the limiting factor

being whether α̇I = 0. Another method of Hermitian counterdiabatic driving was introduced

that chooses a projector that keeps the state within the intended subspace. This method

was experimentally verified and performed similarly to the previous one. These two methods

provide avenues for future research in non-Hermitian quantum control for other platforms

and Hamiltonians.

Future directions can explore higher-order exceptional points as they offer numerous ways of

encircling EPs and EP lines. Since decoherence remains an issue for longer encircling loops,

future directions will attempt to mitigate errors due to known dephasing parameters (γϕ),

thus expanding the total drive times for which counterdiabatic driving maintains the instan-

taneous eigenstate. Future research can also extend shortcuts to adiabaticity to multiple

qubits to generate entangled states [157, 158, 159].

In Chapter 4, we better understood the role of the non-Hermitian Hamiltonian in energetics

and dynamics: roles that were previously conflated and resulted in predicted violations of

the Jarzynski equality in certain regions [146, 147, 148, 149, 151]. In this experiment, we
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were able to show that as long as the Hamiltonian obeyed PT -symmetry explicitly or in the

Floquet picture, the Hermitian part of the Hamiltonian acts as the internal energy opera-

tor, and the net heat vanishes, verifying the Jarzynski equality. We performed projective

measurements in the Hermitian basis, which gave us real, allowed energies, while the non-

Hermitian Hamiltonian governed the time evolution. The Jarzynski equality was previously

verified in isolated quantum systems [152] and decohering systems (no dissipation) [143] since

the TPM protocol gives measurements of internal energy where Q = 0. Previous tests of the

Jarzynski equality have offered corrections for the energetic cost of information, monitoring,

feedback, and the measurement process [160, 39, 161, 144, 162, 30]. A fully comprehensive

measurement scheme or correction to the Jarzynski equality remains an open question in this

field for dissipative non-Hermitian Hamiltonians that don’t obey PT symmetry (Floquet or

explicit).

We hope that this thesis provides some insight through a better understanding of how non-

Hermitian Hamiltonians function. By exploring the parameter space both in terms of the

topology of the Riemann sheets and the regions of PT -symmetry, we better understand how

gain and loss affect our dynamics and measurements. This research provides future avenues

of exploration that can utilize systems described by non-Hermitian Hamiltonians for state

preparation (single or multi-qubit), thermodynamic engines, or computational protocols.
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