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ABSTRACT OF THE DISSERTATION

Experimental Investigation of Non-Hermiticity in Quantum Systems

by

Maryam Abbasi

Doctor of Philosophy in Physics

Washington University in St.Louis, 2023

Professor Kater W. Murch (Chair)

The investigation of quantum systems in experimental setups involves interaction with

the environment, which introduces channels of dissipation. These systems can be described

by a non-Hermitian Hamiltonian, capturing the effect of gain and loss. Realizing these

systems in classical cases demonstrates interesting phenomena such as topological features

in the optical and mechanical domain, energy transfer, and enhancement in sensing. The

primary focus of this thesis is the realization of the non-Hermiticity in a quantum system. To

accomplish this, we harness multiple energy levels of an anharmonic superconducting circuit

with coupling to an engineered bath to investigate the static and dynamic features of the

system. The static features of our system provide us with detail about the energy landscape

and its corresponding eigenstate. The unique energy landscape is investigated further by

using a time-dependent drive to study the adiabatic limit. In dissipative dynamics, the role

of quantum jumps becomes crucial in studying adiabatic processes. Further study of the

non-Hermiticity with decoherence processes exhibits unique topology and energy landscape

which will help us understand more complex open quantum systems. These studies provide

insight into open quantum system dynamics and how to harness their unique characteristics

in a fully quantum regime.

ix



Chapter 1

Open Quantum systems

1.1 Review of key concepts in quantum mechanics

In this section, I provide an overview of the fundamental concepts of quantum mechanics

that are essential to the work presented in this thesis. First, I introduce the representation

of quantum states on the Bloch sphere, which offers a powerful visual tool for understanding

the behavior of qubits. Next, I discuss the density matrix operator and its evolution under

unitary transformations for a system coupled to an external environment or bath. This

evolution is described by the Kraus representation, which effectively captures the dynamics

of the subsystem of interest. Lastly, I outline the derivation of the master equation, and

provide an example for clarity. The content in this section is primarily based on references

[1, 2, 3], and Qiskit textbook [4], where interested readers can find more in-depth information

on these topics.

Let’s start by understanding observables and measurements. We can describe any quan-

tum states by some linear combination of the basis states of some observable operator A.
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Let’s consider a generic state of the form:

|α⟩ =
∑
a′

|a′⟩⟨a′|α⟩, (1.1)

where |a′⟩ is the eigenstate of the observable A. Born’s rule tells us if a measurement takes

place, the state |α⟩ will collapse to one of the eigenstates of the observable A. Moreover, we

can see from this equation that unless the system is in the eigenstates of the observable, we

don’t know with certainty what would result from the measurement. However, we can find

the probability of collapsing to each eigenstate by calculating the following inner product:

Pa′ = |⟨a′|α⟩|2. (1.2)

This probability cannot be negative, and the sum over all eigenstates of Eq. 1.2 should

be 1. By performing measurements, we can measure the eigenvalues of our observable. So

we can define a measurement operator that projects the quantum state on eigenstates of

the observable operator. Looking at Eq. 1.1, the outer product |a′⟩⟨a′| in the sum is the

measurement operator on the state |α⟩. So we define our projection operator as:

Λ′
a = |a′⟩⟨a′|. (1.3)

By applying this operator to any state, we can project the quantum state on the observ-

able’s basis and acquire the probabilities. However, we must repeat the same measurement

many times to achieve the probabilities. In experimental systems, it is useful to discuss the

expectation value of an observable with respect to a given state. In Sec. 1.3, I will discuss

the density matrix and observables measured in experimental systems.

2



(a) (b) (c)

Fig. 1.1: (a) State |X+⟩ on the Bloch sphere. (b) State |Y−⟩ on the Bloch sphere. (c)
Evolution of an arbitrary state under a constant drive. Qiskit [4] is used to
represent Bloch spheres.

1.2 Bloch sphere representation

In the classical world, information is stored using binary values 0 and 1. Bits are used to

represent the objects, data, and any software on classical computers. In the quantum world,

however, the concept of bits transforms into quantum states that not only can be in 0 or 1

state but also in an arbitrary superposition of these two values. This concept is a little bit

more complicated because what we can measure are still 0s and 1s, but the process these

states can undergo is only possible with the rules of quantum mechanics. The operations

on qubits in quantum mechanics are completely different, and in order for us to understand

these operations, it’s useful to have an intuitive visualization of the quantum states.

Let’s start by assigning 0’s and 1’s to the two states of the quantum system:

|0⟩ = [0, 1], |1⟩ = [1, 0]. (1.4)

3



The measurement outcome of these states are 0 and 1, respectively. Moreover, these two

states are orthogonal, meaning they can span the space of any superposition of these two

states. The case becomes more interesting when the state of the qubit is a superposition of

these two states, which we can write as follows:

|ψ⟩ = α|0⟩ + β|1⟩, (1.5)

where α and β are some complex number, with constraint α2 + β2 = 1.

The state |ψ⟩ tells us all the information we need to determine the state of a qubit.

The measurement output for this case are still 0s and 1s. But α and β can be defined by

performing many measurements. After many measurements on these states, we can achieve

a probability that tells us the qubit’s state. These two values can take a complex value. To

describe them, we need at least two parameters—given that the state is a unit vector. Now,

the way we want to represent the measured states can be simply understood by using the

two angles defining a unit vector on a surface of a sphere. To understand this, first, we need

to simplify the state |ψ⟩, we know that |0⟩ and |1⟩ can each be a complex number. However,

since we only measure the relative phase between the two, we can assign a phase to one of

them. Finally we can change variables and write α = sin θ/2 and β = cos θ/2 exp{iϕ} –

remember that α2 + β2 = 1. Now we can see that these two variables can be the spherical

coordinates on a sphere. Let’s consider the two cases:

• |x+⟩ = 1/2(|0⟩ + |1⟩) → {θ = π/2, ϕ = 0},

• |y−⟩ = 1/2(|0⟩ − i|1⟩) → {θ = π/2, ϕ = π/2},

where |x+⟩ and |y−⟩ are the eigenstates of σx and σy Pauli matrices, respectively. In Fig.

1.1, you can see the representation of these states on Bloch sphere—where Fig. 1.1a is

4



|X+⟩ and Fig. 1.1b is |Y−⟩. In this section, we have learned that we can represent all

qubit states on the Bloch sphere. Moreover, this picture is useful because it can give clear

pictures of quantum processes. Let’s look at how qubit states evolve under a constant driving

Hamiltonian:

H = Jσy, (1.6)

where J is a real value. An arbitrary state evolving under Eq. 1.6 can be understood by

decomposing the state into the σy eigenvalues:

ψ(t) = a+e
E+ |y+⟩ + a−e

E− |y−⟩ , (1.7)

where a± are determined by the initial state. In Fig. 1.1c, an arbitrary state is shown that

evolves around the Y –axis following the dashed red line. This means that the system goes

through oscillation as it revolves around the Y –axis. This is called Rabi oscillation. We

can describe the evolution of quantum states on the Bloch sphere, which is a great tool for

visualizing quantum systems.

1.3 Density operators

We use density operators to represent an ensemble of quantum states. This ensemble can

consist of many quantum systems in a pure state. This is an important concept in experi-

mental quantum systems when we want to describe and measure the state of our qubit. If

we perform a measurement on our quantum system at state |ψi⟩ and make a measurement

with a measurement operator Mi. The resulting measured state wil be Mi|ψi⟩
⟨ψi|M†

i Mi|ψi⟩
. Based

5



on this, we define an operator that represents the density state:

ρ =
∑
i

pi|ψi⟩⟨ψi|, (1.8)

where pi is the probability of the state |ψi⟩.

The density operator has the following properties:

1. The trace of the density matrix is unity:

Tr{ρ} = 1, (1.9)

2. The density operator is Hermitian, guaranteed by the fact that the matrix elements of

the density matrix are probabilities that are always positive:

ρ† = ρ, (1.10)

3. The density matrix is positive definite. i.e.

⟨ν|ρ|ν⟩ =
∑
i

pi|⟨ψi|ν⟩|2 ≥ 0, (1.11)

for all states |ν⟩ ∈ H.

The density matrix evolution can be obtained using the time-evolution operator. If we

write the density matrix in terms of the pure states’ time evolution, we have:

|ψi(t)⟩ = U(t)|ψi⟩ → ρ(t) =
∑
i

pi|ψi(t)⟩⟨ψi(t)| = U(t)ρ(0)U †(t). (1.12)

We can find the result of a measurement on the system by finding the trace of the density

6



operator and the measurement operator as follows:

pi = Tr
[
ρM †

iMi

]
, (1.13)

and the expectation value of an observable A in the density operator picture would be

⟨A⟩ = Tr(ρA).

Moreover, we can simply use our density operator’s matrix elements to visualize the state

on the Bloch sphere:

ρ = 1
2

 1 + vz vx − ivy

vx + ivy 1 − vz

 ., (1.14)

where vx, vy and vz are the expectation values of the Pauli matrices and determine the

location of the qubit state on the Bloch sphere. The magnitude of the Bloch sphere is

related to the purity of the state. For example, if the density state is ρ = I/2, the Bloch

vector is at the center, which is a maximally mixed state.

1.4 System and a bath

A quantum system coupled to a bath is a critical topic to study due to the role of the bath in

the dynamics of experimental quantum systems. The bath can be designed to give us desired

dynamics for the quantum systems. An example of this is the study of non-Markovianity

and non-Hermiticity. There has been significant research on studying quantum heat engines

by engineering the bath coupled to the qubit. Depending on the experiment, the bath

can comprise the transmission lines, the entire lab, and many degrees of freedom of the

environment. These couplings to the quantum systems are generally detrimental in nature

and result in decoherence. However, we can also harness them by carefully engineering the

7



density of states of the bath.

Let’s consider a system A coupled with a bathB and the evolution of the combined system

can be described by a unitary evolution e−iHt. The combined system can be described by

the direct product of both system’s Hilbert space:

H = HA ⊗ HB. (1.15)

Because the system of interest is A, we trace out the bath degrees of freedom. The partial

trace on the bath will map the Hilbert space to the Hilbert space of A (H → HA):

ρA = TrB[ρ] =
∑
µ

= ⟨µ|U(t)ρ(0)U †(t)|µ⟩, (1.16)

where the trace is taken over the orthogonal basis of the bath |µ⟩ and U(t) is the unitary

time evolution operator of the combined system. Now if we assume that the initial states

are decoupled:

ρ(0) = ρ(0)A ⊗ ρ(0)B. (1.17)

Then the system evolution can be written in terms of the time operator of the combined

system:

ρA(t) =
∑
µν

K(t)µνρA(0)K†(t)µν , (1.18)

where K(t)µν is the Kraus operator defined as:

K(t)µν =
√
λν⟨µ|U(t)|ν⟩. (1.19)

Here U(t) is the time evolution operator of the combined system and the bath. We can

replace µν subscript into one α and reach the Kα(t) Kraus operator representation. This is

8



explained further in the examples below.

1.4.1 Amplitude damping

The decay process from the excited state to the ground state of a quantum system by

spontaneously emitting a photon is amplitude damping. Let’s consider an excited state |1⟩S

and ground state |0⟩S of an atom coupled to an electromagnetic field. The system will decay

into the environment with some probability p by emitting a photon after a while. Then we

have:

|1⟩S |0⟩E → √
p |0⟩S |1⟩E +

√
1 − p |1⟩S |0⟩E . (1.20)

By tracing over the environment, the Kraus operator will be:

K0 = ⟨0|USE |0⟩ =

1 0

0
√

1 − p

 , K1 = ⟨1|USE |0⟩ =

0 √
p

0 0

 , (1.21)

where K0 is the evolution with no quantum jump and K1 represents the quantum jump from

|1⟩S to |0⟩S. Then the evolution of the system can be described by:

ρS(t) = K0ρS(0)K†
0 +K1ρS(0)K†

1 =

ρ00 + pρ11
√

1 − pρ01
√

1 − pρ10 (1 − p)ρ11

 . (1.22)

If we apply this operator n times in time, ρ11 → ρ11(1 − p)n, where p = Γt, which results in

exponential damping ρ11 → ρ11(1−p)n = ρ11(1−Γδt)n ≈ ρ11e
−Γt. The off-diagonal elements

will vanish in the same way. So the final result is:

ρS(t) = K0ρS(0)K†
0 +K1ρS(0)K†

1 =

ρ00 + ρ11 0

0 0

 . (1.23)
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1.4.2 Phase damping

If our system interacts with small parts of the environment weakly, then the state of the

system does not change but it is likely that it undergoes some change due to the presence

of many of these interactions, which in turn changes something about the environment

subsystem but not our system’s state. To represent this behavior, let’s consider a case where

a photon interacts with a system [3]. The system can be either in the ground or first excited

state. If the photon interacts with this system but doesn’t change the system state, it will

only go to its first or second excited state as a result of this collision. So we represent this

change in the environment as follows:

|0⟩S |0⟩E →
√

1 − p |0⟩S |0⟩E + √
p |0⟩S |1⟩E , (1.24)

|1⟩S |0⟩E → √
p |1⟩S |0⟩E +

√
1 − p |1⟩S |2⟩E . (1.25)

With regard to the above equation, a possible unitary is:

U =



√
1 − p

√
p 0 0 0 0

√
p

√
1 − p 0 0 0 0

0 0 1 0 0 0

0 0 0
√

1 − p 0 √
p

0 0 0 0 1 0

0 0 0 √
p 0

√
1 − p



(1.26)
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where the basis is {|0⟩S |0⟩E , |1⟩S |0⟩E , |2⟩S |0⟩E , |0⟩S |1⟩E , |1⟩S |1⟩E , |1⟩S |2⟩E}. The Kraus

operator is given by partial trace of U over the environment state:

K0 = ⟨0|U |0⟩ =
√

1 − pI, K1 = ⟨1|U |0⟩ = √
p |0⟩ ⟨0| , K2 = ⟨2|U |0⟩ = √

p |1⟩ ⟨1| , (1.27)

which gives the system’s evolution:

ρS(t) =

 ρ00
√

1 − pρ01
√

1 − pρ10 ρ11

 , (1.28)

when this happens n times over the evolution with the rate Γ2, the density matrix becomes:

ρS(t) =

 ρ00 e−Γ2tρ01

e−Γ2tρ10 ρ11

 , (1.29)

and at long time, the phase coherence is lost:

ρS(t) =

ρ00 0

0 ρ11

 . (1.30)
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1.5 Master equation

Since we want to characterize the dynamics of the system as it evolves in time in infinitesi-

mal steps, we need a tool that allows us to describe the system’s behavior in the form of a

differential equation in the presence of decoherence. In this section, I introduce the master

equations that describe the dynamics of open quantum systems in a differential form. I

will focus on the master equation formalism which is Markovian. First, the Liouville mas-

ter equation is introduced, and then I will derive the Lindblad master equation using the

Liouville equation.

1.5.1 Liouville Master equation

For a closed system with state vector |ψi⟩, time evolution according to the Schrödinger

equation is:

i
d

dt
|ψ(t)⟩ = H(t) |ψ(t)⟩ . (1.31)

The solution to the Eq. 1.31 can be written in terms of the unitary time-evolution U(t, t0):

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ , (1.32)

where we can show that U(t, t0)U †(t, t0) = U †(t, t0)U(t, t0) = I. For a closed, isolated system,

the form of the time-evolution operator is independent of time, and we have:

U(t, t0) = e−iH(t−t0), (1.33)
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while the presence of some external drive makes the Hamiltonian time-dependent, and

U(t, t0) will be in the following form:

U(t, t0) = T e−i
∫ t

t0
H(t′)dt′

, (1.34)

where T is the time-ordered operator which takes into account the order of the product in

the increasing order.

When the system is not closed and isolated, the state can be a mixed state, and the

density operator is used to describe the state:

ρ(t0) =
∑
i

Pi |ψi(t0)⟩ ⟨ψi(t0)| , (1.35)

where |ψ(t0)⟩ evolves under Shrödinger equation. The evolution of the density operator can

then be written in terms of |ψ(t0)⟩ ⟨ψ(t0)| evolution:

ρ(t) = U(t, t0)ρ(t0)U †(t, t0), (1.36)

and the time derivative of this Eq. 1.36, gives the equation of motion for ρ(t):

d

dt
ρ(t) = −i[H(t), ρ(t)]. (1.37)

This Eq.1.37 is known as Liouville-von Neumann equation. This equation is written in

the following form to emphasize its analogy to the Liouville equation in classical statistical

mechanics:
d

dt
ρ(t) = L(t)ρ(t), (1.38)

where the i is absorbed into L. L is the Liouville super-operator—where the word "super-
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operator" is chosen to emphasize its action on another operator rather than a state vector.

The solution to Eq. 1.38 can be written as:

ρ(t) = e
∫ t

t0
L(t′)dt′

ρ(t0). (1.39)

Now, to understand the dynamics of open quantum system, we start by writing the

Hamiltonian of the system and a bath:

H(t) = HS ⊗ IB + IS ⊗HB +HI(t), (1.40)

where HB and HS are the bath and the system Hamiltonian and HI(t) is the interaction

Hamiltonian. The bath or reservoir typically has many degrees of freedom, which form a

continuum and result in irreversible dynamics of open quantum systems. The presence of

many degrees of freedom coupled to a system makes the solution to the system’s evolution

difficult, especially if these degrees of freedom are unknown—which is true for most reservoirs.

So we try to find solutions by finding descriptions that restrict the dynamics to relevant

variables. The desired dynamics is the reduced density matrix of the system ρS = TrB ρ. So

we want to use the total evolution dynamics:

ρ(0) = ρS(0) ⊗ ρB
time evolution−−−−−−−−−→ ρ(t) = U(t, t0)ρS(0) ⊗ ρBU

†(t, t0), (1.41)

into the following form for the desired part of the system:

ρS(t) = TrB{U(t, t0)ρt0U †(t, t0)} ≡ V (t)ρS(0), (1.42)

where V (t) defines a map of the space of the reduced density matrix to itself. If we write the
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bath degree of freedom in terms of its basis in the following spectral decomposition form:

ρB =
∑
α

λα |ψα⟩ ⟨ψα| . (1.43)

We can see that Eq. 1.42 takes the form:

V (t)ρS =
∑
α,β

Wα,β(t)ρSW †
α,β(t), (1.44)

where:

Wα,β(t) =
√
λβ ⟨ψα|U(t, 0) |ψβ⟩ , (1.45)

describes a generalized quantum measurement in Eq. 1.18—a Kraus operator. V (t) is a

completely positive and trace-preserving quantum operation. If the reservoir correlation

function decays much faster than the system evolution time, then we can ignore the effect

of memory. This category of systems are Markovian and can be formalized as follows:

V (t1)V (t2) = V (t1 + t2), t1, t2 ≥ 0. (1.46)

So we will investigate a semigroup with the property in Eq. 1.46. The generator for this

semigroup can be written as:

V (t) = eLt, (1.47)

with reduced density matrix of the form:

d

dt
ρS(t) = LρS(t), (1.48)

which is the Liouville super-operator. We can show that the most general form of this
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generator L can be constructed in the following form:

LρS = −i[H, ρS] +
N2−1∑
k=1

γk(AkρSA†
k − 1

2A
†
kAkρS − 1

2ρSA
†
kAk), (1.49)

where the first term in this equation is the unitary evolution. Operators Ak are constructed

by the Liouville basis operators Fi, where:

(Fi, Fj) ≡ TrS{F †
i Fj} = δij, (1.50)

which are the complete orthonormal basis of Liouville space of complex N2 dimensions. This

basis defines the action of the dynamical map V (t):

V (t)ρS =
N2∑
i,j=1

cij(t)FiρSF †
j . (1.51)

Where cij is the coefficient matrix. The detailed derivation of Eq.1.49 can be found in

[1]. Operators Ak are referred to as Lindblad operators, which correspond to the different

channels of dissipations to the environment with the rates γk. We can introduce dissipators

with this form:

D(ρS) ≡
N2−1∑
k=1

γk(AkρSA†
k − 1

2A
†
kAkρS − 1

2ρSA
†
kAk), (1.52)

and write down the Lindblad equation in terms of the dissipators for convenience:

d

dt
ρS(t) = −i[H, ρS] + D(ρS(t)). (1.53)
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1.5.1.1 An example

To understand the terms in Eq. 1.53, we can consider a case that will be used in future

chapters of this thesis. Here, we want to acquire the dynamics of a superconducting circuit

with three energy levels |g⟩, |e⟩ and |f⟩ with a coupling rate J and frequency detuning ∆

between the |e⟩–|f⟩ transition. The Hamiltonian is described with the following form:

H =


0 0 0

0 ∆ J

0 J 0

 , (1.54)

since this is a circuit inside a cavity and is coupled to a Markovian bath, there is coupling to

the environment and as a result, dissipation channels. These are the relaxation rates from

|e⟩ to |g⟩ and from |f⟩ to |e⟩ shown with γe and γf . The corresponding Lindblad operators

are Le = √
γe |g⟩ ⟨e| and Lf = √

γf |e⟩ ⟨f |:

Le =


0 √

γe 0

0 0 0

0 0 0

 , (1.55)

Lf =


0 0 0

0 0 √
γf

0 0 0

 , (1.56)
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There is also dephasing associated with these transitions with the Lindblad operators:

L2e =


0 0 0

0
√
γ2e/2 0

0 0 0

 , (1.57)

L2f =


0 0 0

0 0 0

0 0
√
γ2f/2

 , (1.58)

where γ2e and γ2f are dephasing rates. Now, the master equation we want to solve gets the

following form:

d

dt
ρ(t) = −i[H, ρ(t)] + γe(LeρL†

e − 1
2L†

eLeρ− 1
2ρL

†
eLe)+

γf (LfρL†
f − 1

2L†
fLfρ− 1

2ρL
†
fLf )+

γ2e/2(L2eρL†
2e − 1

2L†
2eL2eρ− 1

2ρL
†
2eL2e)+

γ2f/2(L2fρL†
2f − 1

2L†
2fL2fρ− 1

2ρL
†
2fL2f ) (1.59)
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Chapter 2

Parity-Time symmetry

2.1 Basics of PT-symmetry

The field of PT-symmetry originated with a seminal paper by Bender in 1998 [5], which intro-

duced a unique type of non-Hermitian system characterized by real spectra. In subsequent

years there have been considerable experimental efforts towards realizing PT-symmetric

systems [6, 7, 8, 9, 10, 11, 12]. In this section, I provide the fundamental concepts of

PT-symmetry to understand the core of this thesis. This chapter follows the book on PT-

symmetry [13]—this book offers an excellent resource for further understanding of this topic.

Quantum systems can be classified as either closed or open quantum systems. Closed

systems are described by Hermitian Hamiltonians with real eigenvalues and unitary time

evolution. The norm of the state or probability is conserved for these systems. These

systems do not interact with the external environment which makes them impossible to be

observed in the experimental setting where measurement is applied. The experimental setups

are quantum systems that interact with the environment and are open quantum systems. In

the case of open quantum systems, we have a flow of probability, and the system is not in

equilibrium, Fig. 2.1a.

It should be noted that, in the field of superconducting circuits, dispersive approximation
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A A’A

(a) (b)

A’A

(c)

Coupling

Fig. 2.1: (a) A system with loss. (b) A PT-symmetric version of panel (a) by adding a
time-reverse copy of the original. (c) Coupling added to the panel (b) case.

is commonly employed. This approximation emerges due to the significant detuning of

frequencies between the system (i.e., the qubit) and its interacting environment (i.e., the

cavity), leading to a relatively weak interaction. As a consequence, the qubit and the cavity

do not directly exchange energy. Instead, this minimal interaction merely induces a slight

shift in the cavity frequency.

However, there is a way to construct a non-isolated system that does not have a flow

of probability in and out of the system. This can be done by adding a copy of the system

with the opposite flow of probability, Fig. 2.1b. The second part is the time reversal of the

original copy. If the original has a loss, the second part has a gain. The two parts together

have zero flow of probability in or out of the system. This system has a symmetry called

parity-time (PT)-symmetry because if we reverse the time T in this system, then gain and

loss parts will reverse, which reverses the parity P of the system.

The system is still different from a closed system because it is not in equilibrium, where

one part’s probability increases and the other decreases. However, by coupling the two

parts, they can exchange probability, Fig. 2.1c. If the dynamics is at equilibrium after the

coupling, then the system is in the PT-symmetric phase. The system is in the broken PT-

symmetric phase when this equilibrium is not acquired after introducing the coupling. The

PT-symmetric phase is similar to closed systems, while the broken PT-symmetric phase is

similar to open quantum systems. The transition from equilibrium to non-equilibrium is an
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abrupt point with a certain value of the coupling rate. This transition is known as the PT

phase transition.

Let’s look at an example of a PT-symmetric system. The system is a simple physical

system described by the following Hamiltonian:

H = [a+ ib], (2.1)

with real a and b. This represents a single state with energy a+ ib. Solving the Schrödinger

equation for this Hamiltonian gives the following solution:

ψ(t) = Ce(−ai+b)t. (2.2)

This system is non-Hermitian for b ̸= 0, and probability grows or decreases with time:

P = ψ†ψ = |C|2e2bt. (2.3)

This system is an open system with the flow of probability. Now, we can add a copy of this

system by applying the time reversal operator which is by converting i to −i. So the second

system will be:

H ′ = T HT −1 = [a− ib], (2.4)

with the Schrödinger solution ψ(t) = Ce(−ai−b)t. Here the probability is:

P ′ = ψ†ψ = |C|2e−2bt. (2.5)
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Now the composite system can be described by the following Hamiltonian:

HInteraction =

a+ ib 0

0 a− ib

 . (2.6)

The parity operator for this system is:

P =

0 1

1 0

 , (2.7)

which exchanges the two parts. We can show that this Hamiltonian is symmetric under the

combined operation of T and P :

PT Hinteraction(PT )−1 = Hinteraction. (2.8)

Now we couple the two parts to allow the system to achieve the equilibrium:

Hinteraction =

a+ ib g

g a− ib

 , (2.9)

where g is the coupling rate. This Hamiltonian is PT-symmetric but not Hermitian. However,

this system can have real energies if g is larger than a certain value. The eigenvalues of this

Hamiltonian are:

E± = a±
√
g2 − b2. (2.10)

For g2 > b2, the combined system is at equilibrium and in the unbroken PT-symmetric phase,

while for g2 < b2, the system is in the broken PT-symmetric phase. The eigenvalues of this

system is shown in Fig. 2.2, where the dashed lines are real and solid lines are imaginary
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Fig. 2.2: The eigenvalues of the Hamiltonian in Eq. 2.11, for a = 2 and b = 1 as a function
of g. The dashed lines are the real parts, and the solid lines are the imaginary
parts. Figure from the book in reference [13].

parts of the eigenvalues. We can see that the transition occurs at g = ±b where the real

eigenvalues coalesce at this point and become imaginary for g2 < b2.

2.1.1 Complex number theory and PT-symmetry

There is a connection between the complex number theory and PT-symmetry. Typically, the

PT-symmetric systems have imaginary eigenvalues, i.e., if we consider a Hermitian system

where b (in Eq. 2.11) is zero, then if we change the Hamiltonian by allowing b to be nonzero

in the complex domain, then the system is not Hermitian anymore. In this section, we

investigate the relation between complex number theory and PT-symmetric Hamiltonians.

Historically, Complex numbers have had an important role in understanding real equa-
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tions. For example, equations that do not have roots in the real spectrum have roots in the

complex domain—the equation x4 + 1 = 0 is an example of complex roots: e±π/4, e±3π/4.

Finding the roots of these equations helped us understand the functions that had singularities

in their denominators in the complex domains.

In order to explore the complex analysis of the PT-symmetric system, let’s start with a

two-dimensional Hermitian matrix:

H =

a g

g b

 . (2.11)

This is a Hamiltonian of a coupled system with eigenvalues of each part being a and b in the

absence of coupling. The secular equation of this Hamiltonian is:

0 = det(H − IE) = E2 − (a+ b)E + ab− g2 (2.12)

, and the eigenvalues are:

E±(g) = 1
2a+ 1

2b± 1
2

√
(a− b)2 + g2. (2.13)

There is no degeneracy in the real domain. Let’s take a = 1 and b = 2:

E±(g) = 3
2 + ±1

2

√
1 + g2. (2.14)

At g = ±i, E±(g) has square root branch points in the complex domain. This point is called

an exceptional point, where the eigenvalues typically coalesce. In this case, two eigenvalues

merge, making the branch point an order two degeneracy. By extending this eigenvalue

problem to the complex domain, we gain insight into the quantization of energy. That means
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Fig. 2.3: Orange and blue paths are closed loops that do not encircle the exceptional point.
While green and purple paths encircle the exceptional point and result in the
exchange of identity of the two eigenvalues. Figure is from reference [13]

the function E(g) = 3
2 + 1

2
√

1 + g2 is, in fact, continuous in complex energy as a function of g.

The two eigenvalues are continuously connected through a two-sheeted Riemann surface, Fig.

2.3. Moreover, the quantization has a topological interpretation, which can be understood

by considering a closed path with or without the exceptional point, Fig. 2.3. As it’s shown in

Fig. 2.3, for the closed path that does not encircle the exceptional point, the energy spectrum

also follows a closed path and returns to itself. However, if we encircle an exceptional point

at the branch cut, the two energies exchange their identities, which is because in the complex

domain they are the analytical continuation of each other.

The experimental realization of PT-symmetric systems can lead to unique phenomena in

different platforms such as electrical systems [7, 14], optical systems [7, 9, 15, 16, 17, 18], and

mechanical systems [19]. It is important to note that achieving a balanced gain and loss is
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not the sole criterion for realizing PT-symmetry. In fact, there has been research involving

systems with overall loss [6, 10, 20, 12], where, for example, one channel is lossless while the

other experiences loss. These systems are known as passive systems and they are related

to PT-symmetric case with a gauge transformation. The following chapter will explore the

experimental realization of PT-symmetric systems.
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Chapter 3

Experimental probes of

non-Hermitian systems

3.1 Classical examples

3.1.1 Mechanics

Carl Bender, a founder of theoretical Parity-Time symmetry, and his team demonstrated

PT-symmetry in a simple experiment using two pendula [19], Fig. 3.1a. Two pendula are

coupled via a horizontal rope, while each of them are hanging from the ceiling. There is

an electromagnet for each pendulum that is turned on for a short time to add or subtract

energy depending on when the magnet is applied. To ensure that the electromagnet is

applied properly, the experiment uses an optical sensor that monitors the pendula. Finally,

they record the displacements of the pendula, which are labeled as x and y for each oscillator.

They perform the experiment for three different cases:

• The electromagnet is off, so we observe Rabi power oscillation, Fig. 3.1b. The exchange

of energy between the pendula corresponds to PT-symmetry unbroken region.
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Mechamics
(a) (b) (c)

Fig. 3.1: Mechanics: (a) The experimental setup comprises two pendula coupled by a hori-
zontal string with adjustable weight to change the coupling. There is electromag-
net to apply field on an iron nail on top of each pendula pulley and sensors to
monitor the motion of the pendula. Oscillation of pendulum x when, (b) Elec-
tromagnet is off. (c) Electromagnet is strongly turned on and the mass on the
coupling string is increased. Figure from [19].

• When the electromagnet is on, and coupling is weakened by increasing the mass on

the horizontal string. We observe the oscillation has disappeared and we are at the

PT-symmetry broken region Fig. 3.1c.

3.1.2 Optomechanics

This section gives a summary of the work done on an optomechanical system [21], which is a

silicon nitride membrane inside an optical cavity. Two vibrational modes of this membrane

which are nearly degenerate are chosen to demonstrate PT-symmetric phenomena, Fig. 3.2a.

When the two modes are driven by a laser light, the coupling rates introduced to the system

create an effective PT-symmetric Hamiltonian. The power P and the frequency ΩL of the

laser light that drives these modes can be varied to realize energy transfer between the two

modes. The system undergoes a change in two parameters of this system in a closed loop

to demonstrate the asymmetric mode switch and energy transfer between the two modes.
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Opto-Mechamics
(a) (b)

Fig. 3.2: Optomechanics: (a) Optomechanical setup including the membrane, lasers, split-
ters and etc. (b) The amplitude of the two modes |ca,b|, when the EP is not
encircled (left) and encircled (right). The grey area is when the closed parameter
loop is implemented. Figure from [21].

When comparing the amplitude of the motion of the normal modes |ca| and |cb|, before and

after the control loop, two situation was observed:

• If the control loop does not encircle the exceptional point, 99% of the energy stays in

the initial mode ca, Fig. 3.2b (left).

• If the loop encircles the exceptional point the energy transfers from mode a to mode

b, shown in Fig. 3.2b (right), where 99% of the energy is in mode a before starting the

loop and 99% of energy is in mode b after the loop.

3.1.3 Optics

There are many instances of the realization of PT-symmetry in optical setup, typically these

were achieved by controlling the main ingredient of the optical setups, refractive index —

hence the imaginary part can be gain or loss. Here I explain a summary of the paper [14]

that realizes PT-symmetry in temporal domain in an optical network shown in Fig. 3.3a.
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(a) (b) (c)

Optics

Fig. 3.3: Optics: (a) schematics of the optical fibre. (b) Emission of a secondary wave. (c)
Unidirectional light scattering. Figure from [14].

They shape laser pulses through fibre loops connected by a coupler. The resulted interfered

pulses acquire different phases. The PT-symmetry arises in this system by introducing op-

tical amplifiers and amplitude modulators. In this setup, they observed the emission of a

secondary beam, every time the eigenvalues are imaginary, Fig. 3.3b. Moreover, the unidi-

rectional light scattering was observed in this system by imposing periodic phase modulation

ϕ(n) that creates a temporal Bragg scatterer. The incident light in one direction does not

experience reflection while in the opposite direction, the reflection coefficient is bigger than

one, Fig. 3.3c.
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Fig. 3.4: (a) Schematics of the gate sequence applied on the qubit and ancilla. Ry(θ) is the
rotation along y-axis of the ancilla qubit. The evolution is implemented by a set
of single qubit rotations and three CNOT gates. (b) The evolution of the system
is shown in a color plot as r varies. (c) A cut from panel (b) in the unbroken PT-
symmetry phase, showing asymmetric oscillatory evolution. (d) A cut from panel
(b) at the exceptional point. (e) A cut from panel (b) in the broken PT-symmetry
phase, showing decaying evolution. Figure from [22].

3.2 Non-Hermiticity in quantum experiments

3.2.1 Dilation

In this part, I explain the basics of the dilation method to simulate PT-symmetric systems.

The dilation method harnesses the unitary gates by increasing the dimension of Hilbert

space [23, 24, 25]. By including an ancillary qubit, we can decompose non-unitary pulses

into unitary gates, which is more desirable since quantum computers work in Hermitian

limits with unitary operators. We can simulate the PT-symmetric Hamiltonian by post-

selecting on the evolutions where the ancillary qubit is at a certain state. Realizing gain

and loss in a quantum system is challenging because gain introduces noise, and loss makes

the measurement challenging. The dilation method can be used to simulate PT symmetry

digitally. Here, I follow the work done in reference [22].
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The PT-symmetric Hamiltonian to simulate is:

Hq = σx + irσz, (3.1)

with eigenvalues:

λ± = ±
√

1 − r2, (3.2)

where r is a parameter with real values. At r = 1 there is an exceptional point where the

two eigenvalues and eigenstates coalesce. For r > 1 the eigenvalues are imaginary and for

r < 1 the eigenvalues are real.

The Hamiltonian in equation 3.1 can be realized with the help of an ancillary qubit. The

Naimark dilation method is harnessed with an operator Ha,q(t). Ancillary qubit and target

qubit follow the Schrödinger equation as follows:

i
d

dt
|Ψa,q(t)⟩ = Ha,q |Ψa,q(t)⟩ , (3.3)

where the solution is:

|Ψa,q(t)⟩ = |0⟩a |ψ(t)⟩q + |1⟩a
∣∣∣ψ̄(t)

〉
q
, (3.4)

where i d
dt

|Ψq(t)⟩ = Hq |Ψq(t)⟩ gives the state |Ψq(t)⟩.
∣∣∣ψ̄(t)

〉
q

= η(t) |Ψq(t)⟩ with η(t) = [(1+

η2
0)e−iH†

q te−iHqt−I]1/2 and η(0) = η0I. Initially, both qubit and ancilla are in ground state |0⟩,

then we apply a Y-rotation on the ancilla qubit with an angle θ. Then we implement unitary

Ua,q(t) = T exp
[
−i

∫ t
0 Ha,q(τ)dτ

]
in order to implement different values of r. For an arbitrary

value of r and t this unitary can be found by decomposition into single U j
q (a)—where j

represents the three degrees of freedom for the rotation—and two-qubit gates (CNOT).

After the unitary implementation, the qubit and ancilla are measured in qubit-ancilla basis
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{|00⟩ , |11⟩ , |01⟩ , |11⟩}. The gate sequence is shown in Fig. 3.4a. Then we post-select on the

population that has ancilla qubit at state |0⟩.

After constructing the dilation method to realize the PT-symmetric Hamiltonian, we

can vary r and observe the evolution of the post-selected states. Figure 3.4b shows the

PT transition from the unbroken PT-symmetry phase to the broken PT-symmetry phase at

r = 1. The cut from the oscillatory behavior in the unbroken region is shown in Fig. 3.4c

where r = 0.6 and undergoes asymmetric oscillation due to the interplay between drive and

the gain and loss effect near EP. Figure 3.4d shows the behavior of the system at the EP

with r = 1, and at r = 1.3 the system is in the broken region with decaying evolution.
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relaxation rate of the state |e⟩ as a function of the relative flux change.

3.3 Experimental setup

In this section, I introduce our setup in detail and explain how we achieve non-Hermiticity

in superconducting circuits [26, 27]. Generally, we use anharmonic systems formed from

a nonlinear circuit, which have many discrete states, from which we can pick the desired

energy transitions—in the case of qubits, we only need one energy transition. In supercon-

ducting circuits, the higher states possess the same properties as the first two levels and can

be addressed individually due to the anharmonicity that differentiates different transitions.

However, as we go up to higher states, the system experiences higher decoherence rates which

depends on the change in coupling and the local density of states at the transition frequency

(Γi→f ∝ ⟨f |H |i⟩2 ρ(ωfi)). The density of states can be manipulated by bath engineering
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techniques [28, 29, 30], so that we increase the density of states available for |e⟩ ↔ |g⟩ while

reducing it for |f⟩ ↔ |e⟩. Here, our goal is to design a system that allows us to have a

mode-selective loss system with post-selection. This can be done by manipulating the bath

to enhance the relaxation rate of the superconducting circuit at certain frequencies and im-

pedes relaxation at other frequencies. In this experiment, a resonator with desired frequency

was inserted at the output of the readout cavity, Fig. 3.5a, where the transmission line

is coupled inductively to the cavity. Here, we utilized an aluminum cavity with frequency

around 5.6 GHz—the reflection data from the cavity is shown in Fig. 3.5b. The filter has

linewidth of about 6 MHz, which is clear in the zoomed area in Fig. 3.5d. The cavity acts

as a filter when put on the output of the readout cavity. Due to the small linewidth of the

cavity and the challenges in fabricating superconducting circuits, it’s difficult to design a

cavity-qubit system with the exact matching frequency. To overcome this challenge, instead,

we use a tunable qubit to bring the |g⟩–|e⟩ transition to match the filter frequency. To have

the ability to tune the qubit frequency we place the qubit inside a copper cavity and add

coil around the cavity so that we can apply current through the SQUID loop of the qubit.

For further information about qubit fabrication and setup please refer to [31].

Given a tunable qubit and a filter that increases the density of states at frequencies around

5.6 GHz, we can find the decay values corresponding to the qubit frequencies and realize a

mode-selective loss system, which is also known as passive PT-symmetric system. To do so,

we vary the current in the coil around the copper cavity, and measure the relaxation time

T1 at different frequencies—Fig. 3.5c shows how this decay depends on different values of

the flux. The relaxation rate γe = 1/T1e of the |g⟩–|e⟩-transition peaks around Φ/Φ0 = 0.1,

corresponding f = 5.7 GHz and is slower around this peak. Moreover, Fig. 3.5c can be

used to predict the effect of filter cavity on the |g⟩–|e⟩ transition since the anharmonicity

of about 300 MHz, puts |e⟩–|f⟩ transition frequency 5.4 GHz at the flat region of the plot
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i.e. when the density of state is expressed. Based on the data, we choose γe = 6 µs−1 and

γf = 0.2 µs−1, where γf is sufficiently small that it can be ignored, to realize a mode selective

loss system.

The experimental setup inside a Bluefors dilution refrigerator is shown in Fig. 3.6a. The

input line is microwave coax line with attenuators placed in each stage of the fridge. The

Impedence Mismatch Element (IME)—which is the filter cavity—is placed immediately after

the qubit-cavity system. This is followed by circulators to avoid the noise from the output

line from entering the cavity. A Josephson parametric amplifier and HEMT amplifier are

used to amplify the output signal.

We perform homodyne measurement to measure the state of the qubit. The qubit and

cavity have a large detuning ∆, which results in weak coupling. This allows us to simplify

the interaction Hamiltonian of the coupled system:

H = (ωc − χσz)a†a− 1
2ωqσz, (3.5)

where σz is the qubit basis, a† and a are the cavity’s creation and annihilation operator and

χ = g2/∆. We measure the shift in cavity frequency to determine the state of the qubit,

since the frequency is dependent on ⟨σz⟩. To distinguish the three states of the qubit, we

use JPA (Josephson Parametric amplifier) [32, 33] in its phase-sensitive mode to amplify one

quadrature of the cavity signal and de-amplify the other quadrature. The dispersive cavity

shift for {|e⟩ , |f⟩} are χe/2π = −2 MHz and χf/2π = −11 MHz. In Fig. 3.6b, the two

quadratures of the cavity signal are shown when there the qubit’s state is at |g⟩, |e⟩, |f⟩,

and the corresponding histogram of the “I” quadrature is shown in Fig. 3.6c. This is done

by sending a pulse with three points where the first point is no pulse corresponding to the

ground state, the second pulse prepare the qubit at |e⟩ and third pulse prepare the qubit at
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|f⟩.

3.4 Post-selection

The next step is to achieve a bipartite mode-selective loss system. We need to be able to

separate the dynamics of the qubit and its dissipation to the environment. Utilizing the fact

that we can separately access each transition in a qubit, we take the ground state |g⟩ as our

environment and |e⟩ and |f⟩ as the two-level system. As mentioned in the previous subsec-

tion, in order to have high fidelity single shot measurement, we use Josephson parametric

amplifier. This will give us separation between the three states population as shown in Fig.

3.6. By post-selecting on the final states in |f⟩ and |e⟩, we eliminate experiments with jumps

to |g⟩. The population that started in |e⟩–|f⟩ manifold will decay to |g⟩ with the rate γe.

We can normalize the population of the |e⟩–|f⟩ manifold by dividing |e⟩ or |f⟩ population

by the sum of the two states population, as follows:

P ′
e(t) = Pe/f (t)

Pe + Pf
, P ′

f (t) = Pe/f (t)
Pe + Pf

. (3.6)

where Pe/f are the original populations and P ′ is the renormalized population after post-

selection.

The mode-selective non-Hermitian qubit can be comprehended by formulating the Lind-

blad equation as follows:

ρ̇(t) = −i[H, ρ] + LeρL†
e − 1

2{L†
eLe, ρ} + LfρL†

f − 1
2{L†

fLf , ρ}, (3.7)

where H = J(|f⟩ ⟨e| + |e⟩ ⟨f |) represents the Hamiltonian, and Le and Lf are the Lind-

blad dissipators for the |e⟩ and |f⟩ states, respectively. If γf << γe, we can disregard the
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contribution of Lf and approximate Eq. 3.7 to:

ρ̇ = −i[H, ρ] + LeρL†
e − 1

2{L†
eLe, ρ}, (3.8)

where the first term characterizes the unitary evolution, the second term accounts for the

quantum jumps due to measurement, and the last term represents the non-unitary evolution.

By implementing post-selectionâeffectively eliminating the quantum jumps from |e⟩ to |g⟩âwe

remove the second term and obtain the following equation of motion:

ρ̇ = −i[H − i

2L†
eLe, ρ]. (3.9)

The term H − i
2L†

eLe within the commutator in Eq. 3.9 constitutes the effective non-

Hermitian Hamiltonian of interest [34].

3.5 Static EP

In this section, I explain the measurements performed on the system described above, which

is an open quantum system with three anharmonic levels with the two higher levels un-

dergoing dissipation to the ground state |g⟩ [35]. We aim to investigate the non-Hermitian

properties of our system, starting with the Parity-Time (PT)-symmetry transition from the

unbroken to the broken regimes. The transition marks a location of the system’s degen-

eracy known as an Exceptional Point ‘EP’. Afterward, we explore other signatures of the

EP by measuring the decoherence rate as a function of the frequency detuning and asso-

ciated complex eigenvalues. Finally, we observe a significant signature of EP which is the

non-orthogonality of the eigenstates.
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3.5.1 Parity-Time symmetry breaking transition

We discussed Hermitian quantum mechanics in Ch. 3.1. In this description, the physical

system has purely real spectra and undergoes unitary time evolution. If the system is not

closed, we cannot simply apply notions of Hermitian quantum mechanics to our experimental

system. However, Hermiticity is not a fundamental requirement for quantum systems and

different formalism have been developed to deal with non-Hermitian systems. PT-symmetric

systems with balanced gain and loss are a well-known example of a non-Hermitian system

that was discussed in Ch. 3. Here, we aim to realize a bipartite PT-symmetric system

Fig. 3.7a. However, realizing gain is challenging for our superconducting circuit. In this

experiment, we take an equivalent approach by taking only a lossy system that has PT-

symmetric properties Fig. 3.7b. We set the frequency of the qutrit at the desired value,

where the loss from |e⟩ is considerably faster than |f⟩, Fig. 3.7c. By post-selecting on

the {|e⟩–|f⟩} population, we can describe our quantum system by the following effective

non-Hermitian Hamiltonian [36, 35]:

HNH = J(|f⟩ ⟨e| + |e⟩ ⟨f |) + (∆ − iγe/2) |e⟩ ⟨e| , (3.10)
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where J is the coupling rate between the |e⟩ and |f⟩-states. This parameter is set by the

strength of the microwave drive. ∆ is the detuning of the microwave drive for the |g⟩–|e⟩-

transition, and γe is the decay rate of the |e⟩ state. In order to observe the transition between

the PT-symmetric phase and PT-broken phase in the energy spectrum, we tune J from 0

to 10π MHz and examine the dynamics of the non-Hermitian qubit under constant drive

for different values of J . Similar to a balanced gain-loss system, where the energy spectrum

moves from purely real to purely imaginary, we can observe the energy difference going from

purely real to purely imaginary. The energy difference is given by:

δλ = λ+ − λ− =
√

4J2 − (∆ − iγe/2)2, (3.11)

where λ± = iγ/4 ±
√

4J2 − (∆ − iγe/2)2. There is an overall decay term for the eigen-

values in comparison to the balanced gain-loss system, which can be explained by the de-

composition of the Hamiltonian:

HNH = J(|f⟩ ⟨e| + |e⟩ ⟨f |) + (∆/2 − iγe/2)(|e⟩ ⟨e| − |f⟩ ⟨f |) − iγe/2(|e⟩ ⟨e| + |f⟩ ⟨f |). (3.12)

The final term is an overall loss that the mode-selective loss system exhibits, which is absent

in the PT-symmetric system with balanced gain and loss. The overall loss only shifts the

location of the exceptional point from J = γ/2 to J = γ/4 for the eigenvalues difference.

This equation makes the equivalence between Fig. 3.7a and Fig. 3.7b clear.

At ∆ = 0, the PT -transition from a purely real to a purely imaginary eigenvalue dif-

ference occurs. To observe the transition experimentally, we prepare our state by bringing

it to the {|e⟩ , |f⟩} manifold via a π pulse. By looking at how the qubit state evolves un-
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der the constant drive over 4 µs with the strength J , we can find the location where the

spectrum crosses imaginary values into real values. Since the |e⟩ is more dissipative, we

prepare the initial state at |f⟩ with slower decay. During the evolution under this constant

drive, we perform projective measurements in the Z-basis. The system undergoes damped

Rabi oscillations. Extracting the oscillation frequency and damping rate gives the real and

imaginary values of the spectrum, respectively. As we vary the coupling strength J , from

0 to J = γe/4, the quantum state undergoes purely damped evolution; while as we cross

the exceptional point and move to J values that are larger than γ/4, we observe oscillatory

behavior during evolution. The transition from damping to oscillation is the signature of

the exceptional point. In Fig. 3.8, 2 µs evolution time of the system for J in the range

[0,5] rad./µs is shown—this is a zoomed-in region of a 4 µs evolution for J range in [0,17]

rad./µs this data is shown in Fig. 1 of [35]—where this transition happens at J = γ/4. Two

cuts from Fig. 3.8a. show the damped evolution in the broken PT-symmetric region and

oscillation in the unbroken PT-symmetric region Fig. 3.8b. The extracted frequency from

the evolution in Fig. 3.8a is shown in Fig. 3.8d. Another unique feature which is present in

Fig. 3.8a is the asymmetric oscillatory evolution near the EP owing to the strong interplay

between loss and drive strength, Fig. 3.8c. The evolution has a steep positive slope on one

side of the maximum and a slow change in the positive slope in the other direction. If we

choose a point in the steep slope side, we can observe that the population changes starkly by

slowly varying J . This behavior manifests the square root sensitivity of the energy spectrum

to the system’s parameters in proximity to the EP. This sensitivity might have application in

quantum metrology and sensing—but the post-selection process may impose some constrains

due to the low success rate at longer times.

So far we explored the energy spectrum on the ∆ = 0 line where it is either real or

imaginary. However, if the detuning is set to nonzero values, we can study the complex
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energies and their effect on the time evolution of the system. To observe the real and

imaginary part of the spectrum, we need to extract the parameters of the damped oscillation

while driving the system with fixed J and ∆. The evolution of a orbitrary state under

this Hamiltonian looks like a damped oscillation. In order to understand that, we can

mathematically show this correspondence:

U(t)|ψ(t)⟩ = e−iHt |f⟩ = e−iHtα|+⟩ + e−iHtβ|−⟩ = e−iE+tα|+⟩ + e−iE−tβ|−⟩ =

e−i(Re(E+)+iIm(E+))tα|+⟩ + e−i(Re(E−+iIm(E−))tβ|−⟩, (3.13)

where E+ and E− are eigenvalues of the non-Hermitian Hamiltonian |+⟩ and |−⟩, and the

imaginary part of these eigenvalues are the same for ∆ = 0 case. However, for non-zero

detuning, the two states |+⟩ and |−⟩ have different imaginary parts which gives rise to a

decaying profile of an oscillatory evolution—the oscillation arise from the real parts of the

eigenvalues where Re(E+) = −Re(E−). In this experiment we fixed the coupling rate J = 6.9

rad./µs and varied ∆. We let the system evolve for 4 µs where the system reaches the steady

state (Fig. 3.9a) and then extract oscillation frequency Fig. 3.9b and damping rate Fig.

3.9c. Fig. 3.9c shows a sharp dependence of the decoherence rate on the detuning, which

is part of the Reimann topology of this system. The steady state is also another property

that can be studied in this system by letting the evolution settle on the final state. Here

we performed quantum state tomography of all the Pauli expectation values at t = 4 µs to

find the final state. We observed that the system reaches to the single eigenmode of the

Hamiltonian at the exceptional point Fig. 3.9d.
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Fig. 3.9: (a) Time evolution of |X−⟩ state as it reaches the steady state, when the detun-
ing is {−2, 0, 3.5} MHz. (b) The extracted oscillation frequency and decay rate
from rabi oscillation with different detuning and fixed J = 6.9 rad./µs. (c) The
tomography of the steady state for different values of J and ∆. (d) The steady
state tomography shown for J = γ/4 as ∆ is varied.
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Fig. 3.10: (a) Varying the phase along Z–Y plane of the bloch sphere as J is changed in
the broken PT-symmetry phase. (b) Varying the phase along X–Y plane of the
bloch sphere as J is changed in the unbroken PT-symmetry phase. (c) Extracted
eigenstate overlap as J is varied.
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3.5.2 Non-orthogonality of the eigenstates

Another unique property of non-Hermitian systems is the dependence of the angle between

the eigenstates to the proximity to EP. In a Hermitian system, the eigenstates are always

orthogonal to each other, and the Hamiltonian is always diagonalizable. However, in our

Hamiltonian, the two eigenstates overlap with each other and move closer to each other

until they collapse at the EP, where the Hamiltonian is non-diagonalizable. We observe this

effect by preparing the system at different initial states on the Bloch sphere and varying

the drive strength. We can locate the eigenstates in the unbroken regime by looking at the

oscillation under constant drive; if the axis of rotation is along the eigenstates, we observe no

oscillation. In the broken regime, the eigenstate does not undergo decay and stays stationary.

In Fig. 3.10, the color plot shows the difference between two points during the evolution

δP n
f = P n

f (t = 0) − P n
f (t = 500ns) as the drive strength varies. We observed that the

eigenstates stay on the X–Y plane Fig. 3.10a in the unbroken region and the Y –Z plane

Fig. 3.10b in the broken region. The overlap between the eigenstates is shown in Fig. 3.10c.

3.5.3 Conclusion

We showed how the presence of an exceptional point in the energy spectrum of a system

results in complex eigenvalues and enhanced decoherence rate near the EP. Many investi-

gations have been done in the classical domain that offered applications in sensing, energy

transfer, and topological control, which makes this study valuable [37, 38, 39]. We showed

that many of the same behavior can be seen in quantum systems and discussed the limita-

tions they face in these systems. This study offer an avenue for harnessing the PT-symmetric

system as a novel setting for quantum information science.
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3.6 Dynamical tuning of the non-Hermitian

Hamiltonian

In this chapter, I introduce the extension of the static Hamiltonian to a time-dependent case,

where we can study the unique topology of the non-Hermitian systems [40]. This will help

us understand adiabatic processes and their limitations in dissipative systems. The role of

quantum jumps becomes vital in these systems [41]. Finally, we introduce an alternative

approach to understanding the dissipative dynamics of a system [42].

3.6.1 Riemann sheet topology

The energy landscape of the non-Hermitian Hamiltonian exhibits an interesting topology

known as the Riemann topology owing to its complex spectrum. The imaginary part of the

eigenvalues introduces an extra degree of freedom enabling exciting phenomena such as the

mode switching of the eigenstates. In this section, I focus on our work on encircling the EP

to explore this topology.

The energy landscape of the Hamiltonian is shown in Fig. 3.11(a, b) in terms of J the

coupling rate and ∆, the detuning. The real and imaginary surfaces exhibit degeneracies at

J = ±γ/4 and ∆ = 0, shown in Fig. 3.11(a, b) as EPs. The real surfaces have a branch cut in

the broken region where the two eigenvalue surfaces meet, while the imaginary surfaces have

a branch cut in the unbroken region. The branch cut allows a smooth connection between

the two sheets. We aim to show this smooth transition by allowing the system to evolve as

we slowly vary the parameters in a closed loop. In the case, as the Adiabatic theorem states,

the system follows the instantaneous eigenstates, if the parameters are varied sufficiently

slowly. In order to move on to the instantaneous eigenstates, we need to implement the loop
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in an adiabatic process. The stark difference between the Hermitian and non-Hermitian

cases is that the system does not bring the state back to its initial state; instead, it ends up

in an orthogonal state. This difference is due to the presence of a branch cut that allows the

instantaneous eigenvalues to continuously change into each other in the non-Hermitian case.

The instantaneous eigenstates for three different parameters are shown in Fig. 3.11 on the

Bloch sphere.

3.6.1.1 Encircling the exceptional point in a closed loop

We perform this experiment in the same setup introduced in Sec .4.3. While the Hamilto-

nian parameters were constant for a given evolution in that section, here, we dynamically

control the Hamiltonian parameter during the evolution to observe chiral energy transfer

and examine the accumulated phase during this evolution. We construct the closed loop by

a variable drive with ∆(t), a time-dependent detuning, and, J(t), a time-dependent coupling

rate in a cosine form. We vary these parameters to encircle the exceptional point in a closed

loop slowly. The forms of these parameters are:

J(t) = (Jmax − Jmin) cos (πt/T ) + Jmin, (3.14)

∆(t) = ∆± sin (2πt/T ), (3.15)

where Jmax = 30 rad./µs, T is the period of one loop and ∆± = ±10π rad./µs−1.

The state is prepared at |−⟩ by applying a π/2 pulse; this pulse brings the state to the

instantaneous eigenstate of the Hamiltonian at t = 0. After the preparation, we implement

the loop. During the evolution, we pause at different points of the loop and perform measure-

ments to determine the system’s state. The measurement is the quantum state tomography
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where the system is projected on the three axes of measurement X, Y , and Z— with this

information, we can construct the density matrix. The evolution is divided into 200 time

points and state tomography is performed at each point—x ≡ ⟨σx⟩, y ≡ ⟨σy⟩, z ≡ ⟨σz⟩.

The evolution of the state |−⟩ under the parameter change in a counterclockwise direction

is shown in Fig. 3.12a. After a complete loop, the final state is in the |+⟩, corresponding

to the eigenenergy on the other Riemann surface. The evolution can be viewed as a walk

through the real part of the Riemann sheets where the branch cut allows for the transition to

the other Riemann surface, Fig. 3.12b. There are limitations in the duration of the evolution

due to the presence of dissipation, which results in non-adiabatic coupling manifesting itself

in oscillations shown in Fig. 3.12a. The evolution on the imaginary surface is shown in

Fig. 3.12c, which shows small dissipation close to zero throughout the evolution. The

experimental data shows good agreement with the simulated data shown in dashed lines in

Fig. 3.12a. The simulation was done using Mathematica by solving the Lindblad master

equation with γe = 6.2 rad./µs−1 and γf = 0.32rad./µs−1.

Performing the same loop only in the clockwise direction does not produce the same result,

as shown in Fig. 3.12d. If we walk through the real part of the Riemann sheet as we vary

the parameters, the topology suggests the state transfer to |+⟩. Instead, we observe that the

system suddenly jumps to the other sheet without following the instantaneous eigenstates.

We can explain this behavior by mapping the eigenvalues of the static Hamiltonian on the

imaginary part of the Riemann surface; as shown in Fig. 3.12e, the parameter path undergoes

an evolution that increases the dissipation. This results in the breakdown of adiabaticity

and strong non-adiabatic coupling. After the jump to the other energy sheet, the system

experiences less dissipation. For this case, the simulation data is shown with dashed lines

and agrees well with the experimental data.
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Fig. 3.12: (a) Encircling the EP in CCW direction. The evolution of the qubit under the
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3.6.2 Phase measurement

To investigate the coherent nature of this state transfer, we look at the phase accumulation

and its amplitude. We harness the higher levels of our transmon circuit as a phase reference.

The geometric and dynamical phases are global phases that are not observable without a

reference. To prepare such a phase interference experiment, we start with a superposition

between |h⟩ state and the eigenstate of the Hamiltonian (1/
√

2 |h⟩ + 1/
√

2 |−⟩). This pulse

sequence is shown in Fig. 3.13a, where two rotation pulses one in |g⟩–|f⟩ and one in |e⟩–|f⟩

was applied to bring the state to |h⟩. As the system evolves under the parameter loop in

|e⟩–|f⟩ manifold, |ψ±⟩ acquires a dynamical and geometric phase. while the population in

|f⟩–|h⟩ manifold does not undergo any drive and stays constant. The closed loop is the

encircling loop in Eqs. 3.14 and 3.15.

Here, we keep T = 800 ns and vary Jmin in the range [-15,15] rad./µs−1. After a complete

loop, we perform a Ramsey-like measurement by projecting the final state to (1/
√

2 |h⟩ +

1/
√

2 |ψ±⟩) and extracting the accumulated phase. The final pulse sweeps the angle in the

range [0, 2π], creating a sine wave with phase and contrast information, Fig. 3.13b. The

phase and the contrast are extracted for each Jmin value. Figure 3.13c shows the contrast

of the interference, where projection on |ψ+⟩ (solid lines) has higher contrast around Jmin,

where the two exceptional points are located. We observe that projection on the state |ψ+⟩

is higher. This path follows the Riemann sheet topology, and around Jmin = 0 gives the

highest contrast.

In Fig. 3.13d, the probability of the state transfer is provided for each of these projections.

in this case, the initial state is not a superposition with |h⟩. We can observe that even though,

in the CW direction, the population in |ψ+⟩ is smaller than |ψ−⟩, the contrast is higher near

Jmin. We can conclude that due to the higher contrast, the path following the Riemann
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sheets is coherent in nature.

Finally, in Fig. 3.13(e, f), we measure the accumulated phase over this process. The total

phase consists of two parts: the dynamical phase and the geometric phase:

χ =
∫ T

0
E(t) + χgeometric. (3.16)

The first term is the dynamical phase, which depends on the energy and the time it takes

for the system to evolve. The second term is the geometric phase which depends on the

path the parameters take during this evolution. If we take a closed loop in the parameter

space, we have two possibilities. First, if the system follows the Riemann sheets and spends

half of the evolution time on one sheet and the second half on the other sheet: in this case,

the dynamical phase is canceled because the energies are opposite to each other. Second,

the system stays in one sheet: in this case, the dynamical phase is accumulating over time.

Figure 3.13e depicts the case where the final state is projected on the initial state, where the

state evolves on only one Riemann sheet. The two directions have similar dynamical phase

accumulation for the given Jmin range. Figure 3.13f depicts the case where the final state is

projected on the orthogonal state, where the state evolves on both Riemann sheets. The two

directions have similar about zero dynamical phase accumulation for the given Jmin range.

However, we can see that these two directions are different by π, which is a chiral geometric

phase that was predicted in [43, 44, 45, 46, 47, 48].

3.6.3 Fast driving limit

The objective of this section is to investigate the dependence and efficiency of the state

transfer on the rate of the parameter change and proximity to the EP. Since the closed loop

we use for this study is a periodic Hamiltonian, we draw a connection between the Floquet
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picture and our Hamiltonian. The parameter loop follows Eqs. 3.14 and 3.15. In this study,

we vary both Jmin and the duration T , while keeping ∆± = ±10π.

In Fig. 3.14(a,b), we show the probability of state transfer P (ψ−) at the end of each loop

as we vary Jmin in the range [-30,30] rad./µs and the duration of the loop T ∈ [0.1,2] µs.

In CCW direction, Fig. 3.14a, the state transfer happens with high probability in a region

between [-5,5] rad./µs, which is a larger area as the region between the two exceptional

points. Moreover, this state transfer happens even for shorter times. However, this plot does

not give us any information about how the system evolves within the evolution time. A cut

at a constant Jmin of 6 rad./µs is shown in Fig. 3.14c in red, which is shown with a dashed

line in Fig. 3.14a. We can see that there are small oscillations present with changes in the

duration.

In the CW direction, shown in Fig. 3.14b, we can observe a different behavior where

for most parameters, the state transfer does not occur. For shorter durations, there is a

higher chance of state transfer, while this probability decreases over a longer time. The role

of dissipation becomes more prominent in longer durations, which results in a lower chance

of state transfer in this direction. The finer features and oscillations are present in this

direction as well. A cut from his plot at a constant Jmin of 6 rad./µs is shown in Fig. 3.14c

in blue and indicated in Fig. 3.14b with a dashed line. The oscillation amplitudes are larger

in this case.

To understand the state transfer under parameter variation of the loop, we compare

the state transfer at the end of the loop with the relevant eigenvalues ϵ± and eigenstates

|ϕ±(t)⟩ = |ϕ±(t+ T )⟩ of the Floquet Hamiltonian. This Hamiltonian is defined as follows:

G(T + t, t)|ϕ±(t)⟩ = η±|ϕ±(t)⟩, (3.17)
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where G(T +t, t) = exp
[
−i

∫ T+t
t H(t′)dt′

]
and ϵ± = i ln η±/T are two Floquet quasi-energies.

Our typical experimental parameters are (γ = 7/µs, Jmax = 30 rad./µs, and ∆ = 10π

rad./µs). Figure 3.14d shows normalized difference of Floquet exponents, ∆η ≡ (|η+| −

|η−|)/(|η+| + |η−)|. The boundary between ∆η = 0 and ∆η > 0 marks the Floquet EP

contours; they only occur for Jmin < −γ/4 and, at larger ∆ are pushed further down.

The non-orthogonality of the Floquet eigenvectors, |⟨ϕ+|ϕ−⟩| 3.14e and the mode-switch

probability P (ψ−) Fig. 3.14f, on the other hand, track each other. The CCW direction in

Fig. 3.14a has qualitatively similar features with Fig. 3.14e, while smaller features in both

Fig. 3.14(a,b) have good agreement with Fig. 3.14e.

Dynamical study of the non-Hermitian systems and their corresponding Reimann sheet

topology allow us to explore topological invariants [49, 50]. We can further extend this

study to higher order Hamiltonian and invistigate eigenvalues braiding and exotic topological

classes[51, 52]. Moreover, study the dynamical features can reveal interesting and unique

features in Floquet non-Hermitian systems [53], opening an avenue to study periodic behavior

of these systems.
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3.6.4 Quantum jumps

So far, we considered the decay from |f⟩ to be negligible; however, this decay can be an

essential factor for a longer duration in predicting the dynamics of the system. Moreover,

the dissipative qutrit undergoes dephasing in both transitions. Here, we characterized the

non-unitary dynamics and the effect of quantum jumps and dephasing on the dynamics of

our effective non-Hermitian dynamics.

We used the Lindblad master equation to look at the dynamics of the effective non-

Hermitian Hamiltonian in the previous section of this chapter. The master equation is

described in the following form:

∂ρtot

∂t
= −i[Hc, ρtot] +

∑
k=e,f

[LkρtotL
†
k − 1

2{L†
kLk, ρtot}], (3.18)

where ρtot is the 3 × 3 density operator. The Lindblad dissipators Le = √
γe |g⟩ ⟨e|

and Lf = √
γf |e⟩ ⟨f | corresponding to the decoherence from |e⟩ to |g⟩ and from |f⟩ to

|e⟩, respectively. The drive is applied only in the {|e⟩, |f⟩} sub-manifold with Hamiltonian

Hc = J(|e⟩ ⟨f | + |f⟩ ⟨e|) + ∆/2(|e⟩ ⟨e| − |f⟩ ⟨f |)—where ∆ is the frequency detuning of the

drive frequency from the |e⟩–|f⟩ transition and J is the coupling rate.

Post-selection allows us to isolate the dynamics of the |e⟩–|f⟩ and describe the system

with the following form:
∂ρ

∂t
= −i(Heffρ− ρH†

eff) + LfρL
†
f , (3.19)

where Heff = Hc − iL†
eLe/2 − iL†

fLf/2. If Lf = 0, we can ignore the effect of quantum jumps

from |f⟩ state, which makes the dynamics unitary under Heff . The non-zero γf has a small

impact on the dynamics of the encircling process with short evolution time T = 1.5 µ s−1.

The spectrum of the effective non-Hermitian Hamiltonian with γf is shown in Fig. 3.15(b,c).
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Comparison to the non-zero γf is shown in Fig. 3.15f, where the location of the EP is shifted

to J = (γe + γf )/4 compared to Fig. 3.15b. However, this picture does not account for the

last term in Eqn. 3.19, which is the quantum jumps effect.

To capture the effect of quantum jumps, we use a hybrid-Liouvillian approach [54, 34,

55, 56]. we define two Liouvillian superoperators and describe the dynamics through the

superoperators:
∂ρ

∂t
= (L0 + L1)ρ, (3.20)

where L0ρ ≡ −i(Heffρ−ρH†
eff) and L1ρ ≡ LfρL

†
f . To solve for the eigenvalues of the hybrid-

Liouvillian superoperator, we bring the superoperators of the Eqn.3.20 to the matrix form,

where the dimension of Liouville space is N2 = 4:

L0 =



−γe iJ −iJ 0

iJ −(γe + γf )/2 0 −iJ

−iJ 0 −(γe + γf )/2 iJ

0 −iJ iJ −γf


. (3.21)

L1 =



0 0 0 γf

0 0 0 0

0 0 0 0

0 0 0 0


. (3.22)

where Hc = J(|e⟩⟨f | + |f⟩⟨e|) + ∆/2(|e⟩⟨e| − |f⟩⟨f |). In this formalism, the density matrix
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is a 4 × 1 vector:

ρ =

ρee ρef

ρfe ρff

 →



ρee

ρef

ρfe

ρff


. (3.23)

First, we start with the eigenvalues of the L0 which corresponds to the evolution under Heff :

λ0,1 = −(γe + γf )/2, (3.24)

λ2,3 = −(γe + γf )/2 + 1/2
√

(γe − γf )2 − 16J2, (3.25)

where this superoperator has a third-order hLEP (Hybrid-Liouvillian Exceptional Point)

degeneracy at J = (γe + γf )/4. The imaginary and real parts of the eigenvalues of the

Hybrid-Liouvillian Matrix L0 are shown in Fig. 3.15a and Fig. 3.15c, respectively. Since

Eqn.3.20 does not have an i as opposed to Eqn.3.19, we compare the real part of the Heff

eigenvalues to the imaginary part of the Liouvillian superoperators, and vice versa. Another

difference is that the second-order EP corresponds to the third-order hLEP in this formalism.

If we add the effect of L1 in the hL picture, the eigenvalues become:

λ0 = −(γe + γf )/2 − M

6N1/3 + 1
6N

1/3, (3.26)

λ1 = −(γe + γf )/2 (3.27)

λ2,3 = −(γe + γf )/2 + (1 ± i
√

3)M + (−1 ± i
√

3)N2/3

12N1/3 , (3.28)

where M = 48J2 − 3(γe − γf )2 and N = 216γfJ2 −
√

(216γfJ2)2 +M3. We observe that the

third-order hLEP is lifted. The spectra are shown in the presence of γf , where the degeneracy
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is lifted. The splitting of the eigenvalue’s real and imaginary parts leads to enhancement of

the decoherence rate, which can be understood by looking at the eigenvalues difference:

Re[λ0 − λ2,3] = 3/4(γ2
eγf )1/3, (3.29)

as well as enhancement in oscillatory behavior:

Im[λ2,3] =
√

3/4(γ2
eγf )1/3. (3.30)

These two effects occur due to the cube-root topology of hLEP, Fig. 3.16b.

Now we turn to the experimental observation of the hybrid-Liouvillian picture, where

the quantum jumps and gain and loss effect compete, Fig. 3.16a. Similar to the method we

used in Sec.3.5.1 to extract the oscillation frequency, we prepare the system at state |f⟩ and

drive the system with the rate J . By extracting the oscillation frequency and damping rate

for 3 µs evolution time, we can achieve real and imaginary parts of the hybrid-Liouvillian

spectra. Figure 3.16c shows excellent agreement between the theoretical prediction of the

Liouvillian superoperator eigenvalues and the experimental values. Moreover, we observe

the rapid enhancement of the decoherence rate in the vicinity of the hLEP.

To study the broken PT-symmetric region and the role of quantum jumps in this region,

we investigate the evolution to the stationary state. The Heff has two eigenstate |+⟩ and

|−⟩, where decoherence rate of |+⟩ is faster than |−⟩. So the non-Hermitian dynamics favor

the state with less loss, as shown in the exceptional point’s encircling. The L0 eigenmatrices

are the constructed with the same state ρ0 = |+⟩ ⟨+| and ρ3 = |−⟩ ⟨−|. In the presence of

quantum jumps L1, ρ0 falls on the steady state of the Heff . We can experimentally observe

this behavior by preparing the state at |−⟩ and let the system reach the steady state with
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the drive at J = 0.85 rad/µs−1—which puts the system in the broken region. Figure 3.16e

depicts the 2 µs evolution of the state with non-exponential decay to the steady state in a

shorter time-scale than γf suggests. This is the consequence of the quantum jump, which

then creates a non-zero overlap ⟨−|f⟩. In this case, the population of |+⟩ grows and results

in non-exponential decay to steady-state. We can confirm this by looking at the entropy,

which increases as a result of quantum jumps, creating a mixed state. It’s shown in Fig.

3.16f that the entropy increased at a point around t ≈ 0.6 µs.

Finally, we study the slow driving limit, where the qubit’s parameters change in a way

that satisfies T |λ+ − λ−|. The parameter path is constructed with changes in detuning in

a closed path with a function −30π sin (2πt/T ) rad/µs while keeping J = 30 rad/µs and

T = 4 µs, shown in Fig. 3.17. We observe that in the first half of the evolution, the

eigenstate shown in Fig. 3.17b evolves on the Riemann surface with lower loss (marked as

red) and returns to the initial state. However, in the second half of the evolution, the state

crosses the imaginary surface branch cut and enters the surface with more loss (marked as

blue). The quantum state tomography of this evolution is shown in Fig. 3.17c. To confirm

the occurrence of the quantum jump, we look at the entropy change again. Figure 3.17d

shows an increase in entropy in the second half.
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3.6.5 Decoherence-induced exceptional points

In this section, we focus on capturing the effect of decoherence within the manifold of the

qubit and its impact on the dynamics of open quantum system from the perspective of

Liouvillian Superoperators [57, 58]. This formalism allows us to investigate the non-unitary

effect of the dissipation, which is not captured by effective non-Hermitian Hamiltonian. We

will see that these systems possess EPs known as LEPs and can exhibit state transfer.

Here, we consider a Hamiltonian with two control parameters in |g⟩–|e⟩ manifold: Cou-

pling rate J and detuning of the drive from the transition frequency ∆. The following form

describes this:

Hc = J(|g⟩⟨e| + |e⟩⟨g|) + ∆/2(|g⟩⟨g| − |e⟩⟨e|). (3.31)

The system undergoes spontaneous emission from |e⟩ with the rate γe and dephasing rate

γϕ, Fig. 3.18. We can capture the dynamics of this dissipative qubit by a Liouvillian

superoperator L:

ρ̇ = −i[Hc, ρ] +
∑
k=e,ϕ

[LkρL†
k − 1

2{L†
kLk, ρ}] ≡ Lρ, (3.32)

where Le,ϕ are the jump operators, defined as Le = √
γe |g⟩ ⟨e| and Lϕ =

√
γϕ/2σz, and

Hc = J(|g⟩⟨e| + |e⟩⟨g|) + ∆/2(|g⟩⟨g| − |e⟩⟨e|). By bringing the superoperator into matrix

form, we can extract its eigenvalues and eigenvectors:

Lmatrix
qubit =



0 iJ −iJ γe

iJ −i∆ − γe/2 − γϕ 0 −iJ

−iJ 0 i∆ − γe/2 − γϕ iJ

0 −iJ iJ −γe


. (3.33)
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Where the eigenmodes are:

ρ0 ∝ 1
γ2
e + 8J2

γ2
e + 4J2 2iγeJ

−2iγeJ 4J2

 , (3.34)

ρ1 ∝

0 1

1 0

 , (3.35)

ρ2,3 ∝

−γe ∓
√
γ2
e − 64J2 8iJ

−8iJ γe ±
√
γ2
e − 64J2

 , (3.36)

ρ0 corresponds to the zero eigenvalue and ρ1 is not an eigenvector leading to LEP since both

of them are real eigenvalues. The two other eigenvectors can coalesce and create a second-

order LEP at JLEP = γe/8 − γϕ/4. At ∆ = 0, four eigenvalues of L and the LEP are shown

in Fig. 3.18b.

To understand the emergence of exceptional point degeneracy in the two modes of the

Liouvillian superoperator ρ2,3, we can bring the Lindblad equation into Bloch equation form:


ẋ

ẏ

ż

 = −


γe

2 + γϕ ∆ 0

−∆ γe

2 + γϕ 2J

0 −2J γe




x

y

z

 +


0

0

γe

 . (3.37)

It’s evident that y and z components are coupled with the rate 2J and different losses,

which makes the system a passive parity-time symmetric, Fig. 3.18c. To observe the LEP

in experiment, the system is prepared at |e⟩ and evolves under a drive strength J at ∆ = 0.

3 µs evolution of |e⟩ to its steady state with different J is shown in Fig. 3.18d. The qubit

exhibit transition from damped oscillation (red trace in Fig. 3.18e) to damped evolution
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Fig. 3.18: (a) Schematic of the |g⟩—|e⟩ manifold with the relaxation rate of |e⟩. (b) The
real (solid lines) and imaginary (dashed lines) parts of the eigenvalues of the
Liouvillian superoperator. The vertical dashed line indicates the LEP (c) Y and
Z are the two components of Pauli’s matrices which can be considered a two-level
system with PT symmetry. (d) The color plot of the 3 µs evolution for different
J values. (e) Two cuts from panel e are shown with dashed lines, where one is
in the unbroken region (red) and one in the broken region (blue). (f) extracted
decay rate (red) and frequency (blue) from panel d, which shows good agreement
with the theoretical prediction (solid lines).

(blue trace in Fig. 3.18e) as J is varied in the range [0,3] rad/µs. The frequency and decay

rate are extracted from Fig. 3.18d, which marks the location of LEP at J = γe/8, Fig. 3.18f.

The presence of the exceptional point corresponds to the Riemann sheet topology and

the chiral state transfer phenomena. We can form a parameter loop similar to Sec.3.6.1.1

to explore this topology. In this experiment we choose a parameter loop with J(t) =

16 cos2(πt/T )rad./µs−1 and ∆(t) = ±10π sin(2πt/T )rad./µs−1, where T = 2 µs, Fig. 3.19e.

However, for a non-zero detuning, the Liouvillian superoperator has an LEP structure that

consists of two third-order LEPs and triangular LEP lines, Fig. 3.19h. So the loop we have
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chosen encircles this structure rather than a single LEP.

We prepare the state at the eigenstates of the Hamiltonian at t = 0, which are |±⟩. First,

we look at the evolution of |+⟩ in two different directions: In the Counter-Clockwise (CCW)

direction, the state evolves to the |−⟩ (Fig. 3.19a), while in Clockwise (CW) direction it

comes back to the same state |+⟩ (Fig. 3.19b). On the other hand, if we start with |−⟩, the

CCW direction comes back to the initial state |−⟩ (Fig. 3.19c) and CW direction evolves

into |+⟩ (Fig. 3.19d).

This state transfer can be understood by averaging over an ensemble of trajectories

(Fig. 3.19g) that undergo quantum jumps. The emergence of directionality arises from the

quantum jump favoring |g⟩. One example of a trajectory where a quantum jump occurs and

brings the state to |g⟩, in the beginning, is shown in Fig. 3.19f.

By introducing another energy state, we can explore a new and different type of LEP

purely due to decoherence. Adding the |f⟩ to our system changes the Liouvillian superoper-

ator into 9×9 matrix:

Lmatrix
qutrit =



0 iJ 0 −iJ γe 0 0 0 0

iJ −γe/2 0 0 −iJ 0 0 0 0

0 0 0 0 0 −iJ 0 0 0

−iJ 0 0 −γe/2 iJ 0 0 0 0

0 −iJ 0 iJ −γe 0 0 0 0

0 0 −iJ 0 0 −γe/2 0 0 0

0 0 0 0 0 0 0 iJ 0

0 0 0 0 0 0 iJ −γe/2 0

0 0 0 0 0 0 0 0 0



, (3.38)

where J is still drive in |g⟩—|e⟩ manifold. The bold elements in the matrix correspond to
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the LEP. The real and imaginary parts of the eigenvalues of this matrix are shown in Fig.

3.20(c,d). In this spectra, there are two types of LEP, where type-I LEP has been studied

so far. Type-II LEP (at J = γe/4) arises from the coupling between the two coherence term

of the density matrix ρgf and ρρef
.

We can observe type II LEP if we prepare our state in a superposition of 1/
√

2(|g⟩+ |f⟩),

and then apply a constant drive in |g⟩–|e⟩ manifold. The system transition from the damped

oscillation to exponential decay is measured by 4µs evolution of the ρgf element of the density

matrix, Fig. 3.20a. The frequency and decoherence rate are extracted from Fig. 3.20a and

shown in Fig. 3.20b as blue and red circles, respectively. The experimental result in Fig.

3.20b exhibits good agreement with the theoretical simulation, shown as solid lines in Fig.

3.20b. This exceptional point is interesting because it is non-local, i.e., it only depends on

initial coherence between |f⟩ and |g⟩.
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Chapter 4

Higher-Order exceptional points and

shortcuts to adiabaticity

In this section, I will concentrate on presenting theoretical proposals and exploring possible

avenues for further research. Initially, I will examine the four-level superconducting circuit

introduced earlier, focusing on introducing a drive on the |h⟩–|f⟩ transition. Subsequently,

I will investigate methods to accelerate the adiabatic process within these systems. Lastly,

I will provide a brief overview of potential experiments involving exceptional rings in this

context.

4.1 Introduction

In Sec. 3.6.1.1, we focused on dynamically encircling the EP through time-dependent param-

eter changes. The time dependence imposes limits on adiabatic evolution due to the presence

of dissipation. The ideal behavior is expected to follow the instantaneous eigenvalues on the

Riemann surfaces. To see what the topology suggests for the evolution of the system, we

choose a parameter loop that encircles the EP, Fig. 4.1a. Then at a different point on

this loop, we find the eigenvalues and eigenstates of the static Hamiltonian. The real and
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Fig. 4.1: (a) Schematics of encircling an EP. (b,c). The real (b) and imaginary (b) parts
of the instantaneous eigenvalues of the Hamiltonian are plotted in terms of J and
∆. (d) State transfer shown as real and imaginary parts of the eigenvalues change
with the loop in panel (a).

imaginary parts of the eigenvalues on the Riemann surfaces are shown in Fig. 4.1(b,c). The

imaginary part is an extra degree of freedom that allows the eigenstates to switch without

intersecting, Fig. 4.1d. In Fig. 4.1d, the two eigenvalues are color-coded with blue and red,

and the dashed line represent the two eigenvalues at the beginning λ = 0 and end of the cycle

λ = 2π, where each of the eigenvalues are smoothly transferred to the other at some point in

the middle. However, realizing these processes is challenging, as we have seen in Sec. 3.6.1.1,

where the eigenstates do not fully transfer to instantaneous eigenstates and show oscillations.

Moreover, the mode switch only occurs in one direction and is not symmetric. However, since

we need to continuously change the parameters in time as opposed to statically changing

the parameters, we can employ methods including reverse engineering techniques, which we

will introduce in the following sections. If we can address these challenges, we can harness

more exciting phenomena by accessing to higher dimensional non-Hermitian systems. This

chapter will focus on higher-order EP and the reserve engineering technique to harness them.
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4.2 Higher dimensional non-Hermitian systems

The presence of exceptional points and complex energies allows us to study interesting and

non-trivial topology [51]. One of these features is the study of different braid groups that

braids different eigenstates while smoothly connecting them together. In two dimensional

case, there are only 0-dimensional exceptional points, where a closed loop around this point

smoothly connects the two eigenstates. However, by moving to a higher-dimensional system,
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we have structures of exceptional point, e.g., in a 3-dimensional case, the topology is a trefoil

knot degeneracy [51]. These structures define different braid groups, where within that braid

group, any close loop can be transformed to the other and result in the same eigenstate

braiding. By increasing the number of energy states in the non-Hermitian Hamiltonian, we

can permute more states by harnessing the topology of Riemann sheets. In this section, we

harness the fourth level of the transmon qubit marked as |h⟩ to observe higher dimensional

degeneracies and EP2 structures. As it’s shown in Fig. 4.2a, by post-selecting on the

{|e⟩ , |f⟩ , |h⟩} manifold and allowing the first excited state |e⟩ to have faster loss rate than

|f⟩ and |h⟩, we have a 3×3 dimensional effective non-Hermitian Hamiltonian. We introduce

an extra drive into the {|f⟩ , |h⟩} manifold where we achieve the following Hamiltonian:

H0 =


−iγ/2 + ∆1 J1 0

J∗
1 ∆2 J2

0 J∗
2 0

 (4.1)

where J1 and J2 are the coupling rate between |e⟩–|f⟩ and |f⟩–|h⟩ transition and ∆1 and

∆2 are the detuning of the drive from |e⟩–|f⟩ and |f⟩–|h⟩ transition, respectively. If we set

γe = 7, this Hamiltonian has a third-order EP at J1 = ±7
√

2/3/3, J2 = ±7/(6
√

3), ∆1 = 0

and ∆2 = 0. The EP3s are shown with respect to variation of J1 and J2 in Fig. 4.1c as

purple circles. These EP3s are connected by EP2 lines.

To locate the EP2 lines and EP3s, we can harness differential methods presented in [59].

To find the degeneracies of a differential equation of the form ...
x + pẍ+ qẋ+ rx = 0, we can
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first bring it to the matrix form below:

d

dt


y1

y2

y3

 =


0 1 0

0 0 1

−r −q −p




y1

y2

y3

 , (4.2)

where y1 = x, y2 = ẋ, and y3 = ẍ. The characteristic equation is λ3 + pλ2 + qλ+ r = 0. We

can eliminate the λ2 term without loss of generality:

λ′3 + Aλ′ +B = 0. (4.3)

Any perturbation to A and B will result in lifting the degeneracies of the Hamiltonian.

For this matrix, if both A = 0 and B = 0, we have a three-fold degeneracy. And if the

discriminant of the Matrix is zero, we have lines of two-fold degeneracies. Note that for a

third-order polynomial, the discriminant is 4A3 − 27B2.

Following the same method, we can transform the Hamiltonian in Eq. 4.1 into the form

of Eq. 4.3 and find the EP3 and EP2 lines. In order to do that we solve for the eigenvalues

of the Hamiltonian and write the characteristic equation:

λ3 + (7i
2 − ∆1 − ∆2)λ2 + (−J2

1 − J2
2 − 7i∆2

2 + ∆1∆2)λ− 7iJ2
2

2 + J2
2 ∆1, (4.4)

where we extract the coefficient of the characteristic equation and find A and B for this

Hamiltonian:

A = −J2
1 − J2

2 − 7i∆2

2 + ∆1∆2 − 1
12(−7i+ 2∆1 + 2∆2)2, (4.5)

78



and

B = 1
108(−18J2

1 (−7i+ 2∆1 + 2∆2) + (−7i+ 2∆1 − ∆2)(49 + 36J2
2

− 4∆2
1 − 14i∆2 + 8∆2

2 + 4∆1(7i+ ∆2))). (4.6)

After finding exceptional point structure in Fig. 4.2c, we can start by encircling one of

the EP3s. The EP3 can be encircled by choosing a parameter loop around it. However, any

loop enclosing this degeneracy in J1 and J2 parameter space would necessarily intersect with

an EP2 line. So, the simplest choice of parameter loop is by changing ∆1 and ∆2 at fixed

J1 = ±((7
√

2/3)/3), J2 = ±(7/(6
√

3)), Fig. 4.2b. The form of the loop is:

∆1(λ) = 3 sin (2/9π + 2πλ/T ), (4.7)

∆2(λ) = 3 cos (2/9π + 2πλ/T ), (4.8)

where λ is a parameter that changes the loop. Note that we need to make sure there is no

degeneracy in the loop other than the select EP3. For real detuning values, there are no EP2

lines or EP3 in this parameter space. We can look at the instantaneous eigenvalues of the

loop on the Riemann surfaces surrounding this degeneracy, Fig 4.2d. The Riemann topology

is associated with the three eigenvalues of this Hamiltonian. Here, there are two branch

cuts that connect two pairs of Riemann sheets and allow for a smooth transition between

the eigenstates over a loop. By looking at the evolution of the real and imaginary parts of

the instantaneous eigenvalues as λ is evolving, we can observe that three states permute.

Figure 4.2e shows the starting and final points of the closed loop with two orange planes;

each eigenvalue is color-coded similar to the Riemann surface in Fig. 4.2d. We can see that

none of the colors return to the initial state—the initial state is shown with dashed lines.
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√
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with two different sheets where the EP2 is located. (c) The eigenvalue braiding is
a result of a parametric change of the static parameters around two EP2.

Braiding the eigenvalues can be done with EP2 lines as well. The EP2 lines allow us to

select the eigenstates we want to braid. Figure 4.3 is an example of encircling two EP2s.

Here, I chose a fixed value for J1 = 7
√

2/3/3, and vary the three parameters ∆1, ∆2 and

J1 to find the regions where the discriminant is zero. Figure 4.3a shows two EP2 lines

intersecting with a plane with constant J2 = 2. To encircle both EP2s, the following loop

can be employed:

∆1(λ) = 8 sin (2/9π + 2πλ/T ). (4.9)

∆2(λ) = 8 cos (2/9π + 2πλ/T ). (4.10)

The instantaneous eigenvalues of the Hamiltonian for this parameter loop are shown on

Riemann topology, Fig. 4.3b. The two EP2s are connecting two different sheets and different

points. The braiding of the eigenvalues as a result of this encircling is shown in Fig. 4.3c,

where all three eigenvalues permute similarly to the EP3 encircling.

By choosing a different loop in Fig. 4.3a, we can encircle only one of the EP2 lines. This
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loop is shown in Fig. 4.4a, where:

∆1(λ) = 4 sin (2/9π + 2πλ/T ) + 4. (4.11)

∆2(λ) = 4 cos (2/9π + 2πλ/T ) + 4. (4.12)

The instantaneous eigenvalues corresponding to the loop are shown on the Riemann topology

for fixed values of J1 = 7
√

2/3/3 and J2 = 2. Only blue and red traces cross the branch cut

and the brown trace stays on the same sheet. The evolution of the three eigenvalues over

this parametric loop is shown in Fig. 4.4c, where only two eigenvalues are exchanged. We

can choose our loop in a way that exchanges blue and brown or brown and red eigenvalues

by properly encircling the EP2 of interest. Moreover, if we choose an area in Fig. 4.4a that

does not encircle any EP2 lines, we observe that none of the eigenvalues evolve into another.
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4.2.1 Experimental feasibility

Harnessing the topology discussed above is challenging due to the presence of dissipation.

We have only studied the parametric change of the Hamiltonian so far, where no evolution

has been considered. In the case of EP2 in |e⟩–|f⟩ manifold, we experimentally observed

the difference between the instantaneous eigenvalues and the adiabatic evolution under the

time-dependent Hamiltonian.

4.3 Counterdiabatic drive

So far, we have explored adiabatic processes, where the presence of dissipation imposes lim-

itations on their efficiency. Due to dissipation, we have seen that the system cannot follow

the instantaneous eigenstates, which results in non-adiabatic coupling and deviation from

the desired adiabatic path. This means that we cannot harness the interesting topology of

non-Hermitian systems. To overcome this challenge, we take a different approach toward

adiabaticity that allows faster evolution in shorter durations that mimics the behavior of an

adiabatic process. We look at a reverse engineering method to introduce an additional drive,

known as a counter-diabatic drive. This process is also known as a shortcut to adiabaticity

[60, 61]. These methods still allow us to use the invariants associated with adiabatic pro-

cesses, such as Berry phase. In this chapter, I follow the paper [61] Consider a Hamiltonian

with the time-dependant parameters H0(t), that undergoes adiabatic processes. We aim to

find additional terms to this Hamiltonian H1(t) that speed up H0(t) evolution. We have a

total Hamiltonian:

H(t) = H0(t) +H1(t), (4.13)
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where

H1(t) = i
∑
n

[|∂tn(t)⟩⟨n̂(t)| − ⟨n̂(t)|∂tn(t)⟩|n(t)⟩⟨n̂(t)|], (4.14)

where |n(t)⟩ are the instantaneous eigenstates of the H0(t).

Let’s consider encircling an EP2 for an effective non-Hermitian system in |e⟩–|f⟩ manifold.

In this case, we have:

H0(t) =

iγ/2 + ∆(t) J(t)

J(t) 0

 . (4.15)

Where γ = 7 rad./µs, J(t) = (30 − 0.3) cos (2πt/T ) + 0.3 ∆(t) = ±30 sin (2πt/T ), Fig.

4.5a. Under H0(t), the 2 µs evolution is shown in Fig. 4.5b, which does not follow the

instantaneous eigenstate (shown in dashed lines). So, we introduceH1(t) to this Hamiltonian,

which changes the parameters variation by adding a Jy(t) variation as well as a deformation

in ∆(t) variation near EP, Fig. 4.5c1. The evolution under the total Hamiltonian is shown in

Fig. 4.5d, which closely follows the instantaneous eigenstates and undergoes a perfect state

transfer as suggested by Riemann’s topology. However, after H1(t) addition, the Hamiltonian

has some non-Hermitian contribution that cannot be realized in the experiment. To eliminate

the non-Hermitian contribution, I substitute H1(t) with (H1(t)+H†
1(t))/2, which results in a

different parameter loop that is purely Hermitian, Fig. 4.5e. This change does not affect the

evolution since the non-Hermitian contribution is not large, Fig. 4.5f. Another interesting

effect is that the state transfer does not depend on the direction of evolution anymore. The

parameter change for the opposite direction of detuning is shown in Fig. 4.6a, along with

its corresponding evolution in Fig. 4.6b. Finally, if we do not encircle the EP, we expect the

system to return to the initial state. Figure 4.6c is an example of a loop that does not encircle
1 Note that H1 includes non-Hermitian contributions, which result in the upper off-diagonal elements not

being the complex conjugates of the lower off-diagonal elements. In the remainder of this section, I will
primarily concentrate on examining the upper off-diagonal elements.

85



the EP with J(t) = (30 − 7.25) cos (πt/T ) + 7.25. The evolution under this closed loop is

shown in Fig. 4.6d, where the state returns to the initial state. Note that the expectation

values are shifted by a slight amount from the instantaneous eigenstate for clarity.

We learned that a counter-diabatic drive works for EP2 in a two-level non-Hermitian

system. Here, we apply this counter-diabatic method to EP3. Let’s consider a non-Hermitian

Hamiltonian of this form:

H0 =


−iγ/2 + ∆1 J1 0

J∗
1 ∆2 J2

0 J∗
2 0

 , (4.16)

where J1 = ±7
√

2/3/3, J2 = ±7/(6
√

3) and ∆1(t) = 20 sin(2πt/T + ϕ0) and ∆2(t) =

20 cos(2πt/T + ϕ0), Fig. 4.7a. By adding H1(t) to this Hamiltonian, we observe that some

time-dependent contribution is added to J1x as shown in Fig. 4.7 as well as J1y and J2y

as shown in Fig. 4.7c. The evolution of the system in 0.2 µs is shown in Fig. 4.7d,e,f for

different eigenstates of the Hamiltonian at t = 0. The evolution is then projected on the

instantaneous eigenstates of H0t. The three plots in panel (d,e,f) show that the state evolves

on the instantaneous eigenstates and go through branch cuts at points where the color of the

evolution changes to another eigenstate. For example, for panel d, the system starts at the

eigenstate that is color-coded in blue and evolves until it reaches a branch cut and moves to

the eigenstate color-coded with brown. For all these three cases, the starting points are the

same, but the initial states are different.

However, the evolution in Fig. 4.7(b,c) has non-Hermitian contributions which can be

eliminated by substituting H1(t) with (H1(t) + H†
1(t))/2. The result of the parameter vari-

ation after adding this contribution is shown in Fig. 4.8(b,c), where the original parameter

variation stays comparatively intact, while J1y and J2y (shown in Fig. 4.8c) have the same

form as the case with the non-Hermitian contribution in Fig. 4.8c. The evolution under this

86



Time (μs) Time (μs)
0.00 0.05 0.10 0.15 0.20

−200

−100

0

100

200

0.00 0.05 0.10 0.15 0.20
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

ES1
ES2
ES3

Δ
1       

Δ
2    

Re[J1] Im[J1]    
Re[J2]   Im[J2]

P
ro

b.
P

ro
b.

P
ro

b.
−20

−10

0

10

20

ra
d.

/μ
s

−40

−20

0

20

ra
d.

/μ
s

ra
d.

/μ
s

(a) (d)

(b) (e)

(c) (f)

Fig. 4.7: (a) The encircling loop for H0(t), where ∆1 and ∆2 are varied in 0.2 µs. (b) The
parameter variation in total Hamiltonian after adding H1(t) in J1x, J2x, ∆1, ∆2.
(c) The parameter variation in total Hamiltonian after adding H1(t) in J1y, J2y.
(d,e,f). The evolution under parameter change in panels (b,c) with three initial
eigenstates. The evolution is projected on instantaneous eigenstates of the total
Hamiltonian.
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Hamiltonian is not completely following the instantaneous eigenstates and has some extra

features and lower fidelity.

This study simulates the experimental setup used in the non-Hermitian circuit with

four-level and shows promising results for experimental observation. Some aspects of this

work need further study, including the study of invariants, such as the Berry phase and

its dependence on noise from the environment with counter-diabatic drive. Moreover, the

potential application of this topology with short-time evolution is an important part of this

study that needs further exploration.
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Fig. 4.8: (a) The encircling loop for H0(t), where ∆1 and ∆2 are varied in 0.2 µs. (b) The
parameter variation in total Hamiltonian after adding H1(t) in J1x, J2x, ∆1, ∆2.
(c) The parameter variation in total Hamiltonian after adding H1(t) in J1y, J2y.
(d,e,f). The evolution under parameter change in panels (b,c) with three initial
eigenstates. The evolution is projected on instantaneous eigenstates of the total
Hamiltonian.
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4.4 Exceptional ring

In the previous section, we learned that the exceptional point has a structure in higher-

dimensional spaces. However, in two-dimensional space, we can still create a space of excep-

tional points. One example of this case is the exceptional ring that has been studied in [62].

In this work, they discuss the adiabatic transport of the system on an exceptional ring and

study the accumulated phase. They show that the accumulated phase on the eigenstate of

the system grows as a square root dependence in time and accumulates a π Berry phase.

The Hamiltonian describes the exceptional ring:

Hring =

iγ/4 Je−iϕ

Jeiϕ −iγ/4

 , (4.17)

where ϕ is in the range [0,2π]. Setting J = γ/4 makes this Hamiltonian describing an

exceptional ring. [62]. The eigenstate of this Hamiltonian is:

|v⟩ =

 1

−ieiϕ

 . (4.18)

We can transport this state on the exceptional ring by varying the phase ϕ linearly in time:

ϕ(t) = 2πt/T, (4.19)

where T is the period of the loop. By measuring the phase at the end of the loop and varying

the period T , we acquire a phase of the form:

χ =
√

−iπγT/2 − π, (4.20)
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where the first term is the dynamical phase and the second is the Berry phase.

This system can be realized experimentally by either varying the phase of the drive

linearly with time or use the following equality:

Jei2πt/T = J sin(2πt/T ) + iJ cos(2πt/T ), (4.21)

which can be interpreted as addition of the two pulse modulated with a sine-shaped ampli-

tude. Since Jx and Jy components of the drive have π/2 phase difference, the desired pulse

can be constructed by adding Jx = J modulated with sin(2πt/T ) and Jy = iJ modulated

with cos(2πt/T ).

This work can reveal the interesting topological features of the exceptional points and

harness their potential robustness in the presence of noise. However, this experiment needs

to examine long time evolution, which makes the success rate low. To observe the square

root behavior and fit the data, the short time duration resembles linear dependence, and

only in longer time durations the asymptotic behavior reveals the square root dependence.
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4.5 Future Work

The study of non-Hermitian systems and their exceptional points can be extended to systems

with more qubits. We can engineer coupled non-Hermitian qubits to realize quantum bath

engines and higher-order exceptional points. In multi-qubit systems, the non-Hermiticity

can have effects on the entanglement generation as well. In the paper [63], in collaboration

with Prof. Brigitta Whaley’s group, we showed that by proximity to the exceptional point,

the entanglement could be established in time scales much faster than Hermitian systems.

Moreover, understanding the thermodynamics of these systems can give us insight into the

quantum thermodynamics in open quantum systems. Moreover, future works will benefit

from a 2D design where the number of qubits can be easily scaled, and more robust and

controllable bath engineering techniques can be implemented.
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Appendix A

Mathematica Simulations

In this appendix I included an example of solving non-Hermitian evolution when encircling

an exceptional point. First, I define the variables and Hamiltonian and its corresponding

eigenvalues and eigenstates. Then plot the time-dependent parameters. Next, I solve the

Lindblad master equation and extract the state of the qubit from the density matrix solution.

finally I plotted the evolution and the Riemann surface corresponding to the eigenvalues.
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Chapter A.Mathematica Simulations

Encircling the exceptional point:
Variables :

������� δ = -10 Pi;
γ = 6.2;
p = 1.5;
x = 1;
j = 1;
a = 30;
δ0 = 0;
Clear[J];
γ2 = 0.35;
b = 1 * 1 + .01;
h = 1;

General densitymatrix:

������� ρ[t_] :=
{{ρ11[t], ρ12[t], ρ13[t]}, {ρ21[t], ρ22[t], ρ23[t]}, {ρ31[t], ρ32[t], ρ33[t]}};

Hamiltonian at t = 0 :

������� Hc[t_] := {0, 0, 0}, 0, -ⅈ γ  2 + x * δ * Sin[0 * 2 * h * Pi * 1 / p + δ0],
J * 2 - b * Cos[0 * 2 * Pi * 1 / p + δ0] + b  2,

0, J * 2 - b * Cos[0 * 2 * Pi * 1 / p + δ0] + b  2, -x * δ * Sin[0 * 2 * Pi * 1 / p + δ0] + 0

Find eigenvalues and eigenstates :

������� {vals, vecs} = Eigensystem[Hc[t]];

Normalize the eigenvalues and eigenstates :

������� vecs[[3]] = Normalize[vecs[[3]]];
vecs[[2]] = Normalize[vecs[[2]]];

Time - dependentHamiltonian :

������� Hc[t_] := {0, 0, 0},
0, x * δ  2 * Sint * 2 * Pi * 1 * h  p + δ0, J * 2 - b * Cos[t * 2 * Pi * 1 / p + δ0] + b  2,
0, J * 2 - b * Cos[t * 2 * Pi * 1 / p + δ0] + b  2, -x * δ  2 * Sin[t * 2 * Pi * 1 / p + δ0];

Non -Hermitian Time - dependentHamiltonian :

������� Hc22[t_] := {0, 0, 0}, 0, -ⅈ γ  2 + x * δ  2 * Sin[t * 2 * Pi * 1 / p + δ0],
J * 2 - b * Cos[t * 2 * Pi * 1 / p + δ0] + b  2,

0, J * 2 - b * Cos[t * 2 * Pi * 1 / p + δ0] + b  2, -x * δ  2 * Sin[t * 2 * Pi * 1 / p + δ0];

Eigenvalues and Eigenstates of the non -Hermitian Time - dependentHamiltonian :

������� {vals22, vecs22} = Eigensystem[Hc22[t]] /. J → a /. δ → 5 Pi;

������� �� ������� ����������� ������� �������
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Chapter A.Mathematica Simulations

Eigenvalues and Eigenstates of the Time - dependentHamiltonian :

�������� {vals1, vecs1} = Eigensystem[Hc[t]] /. J → a /. δ → 5 Pi;
vecs1[[3]] = Normalize[vecs1[[3]]];
vecs1[[2]] = Normalize[vecs1[[2]]];

Parameter loop :

�������� delta = x * δ  2 * Sint * h * Pi * 1 * 2  p + δ0;
jey = a * 2 - b * Cos[t * 2 * Pi * 1 / p + δ0] + b  2;

Exceptional point location for comparisonwith different points during the loop :

�������� γf = γ / 4 * t / t; γf2 = -γ / 4 * t / t;

Plotting the parameters and comparingwith J value of the EP :

�������� Plot[{delta, jey, γ / 4, γf2}, {t, 0, p}, PlotRange → All]

��������

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-10

10

20

30

Visualizing the parameter loop :

�������� ListPlot[{Table[{jey, delta}, {t, 0, p, 0.001}], Table[{γf, 0}, {t, 0, p, 0.01}],
Table[{γf2, 0}, {t, 0, p, 0.01}]}, PlotRange → All, Axes → False, PlotStyle →
{{Blue, PointSize[Small]}, {Red, PointSize[Large]}, {Black, PointSize[Large]}}]

��������

Defining the two Lindblad dissipatorsγ_e andγ_f :

2

������� �� ������� ����������� ������� �������
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Chapter A.Mathematica Simulations

�������� L = {{0, Sqrt[γ], 0}, {0, 0, 0}, {0, 0, 0}};
L2 = {{0, 0, 0}, {0, 0, Sqrt[γ2]}, {0, 0, 0}};

LindbladMaster Equation :

�������� P[t_] := -D[ρ[t], t] - ⅈ * Hc[t].ρ[t] - ρ[t].Hc[t] +
L.ρ[t].Transpose[L] - 1  2 * Transpose[L].L.ρ[t] + ρ[t].Transpose[L].L +
L2.ρ[t].Transpose[L2] - 1  2 * Transpose[L2].L2.ρ[t] + ρ[t].Transpose[L2].L2;

zero 3 by3matrix :

�������� ss = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};

Initial densitymatrix :

�������� ρin = Outer[Times, vecs[[j + 1]], Conjugate[vecs[[j + 1]]]];

Solvingmaster equationwith different values of
J (this case only one J at 30 because the step is chosen to be large) :

�������� sol = Table[NDSolve[{P[t] ⩵ ss, ρ[0] ⩵ ρin}, ρ[t], {t, 0, p}], {J, a, a + .5 γ, 30}];

�������� ρin = ρin /. J → a;

Replacing the solution into the densitymatrix :

�������� ans1[t_] := ρ[t] /. sol;

�������� rt1[t_] := ArrayReshape[ans1[t], {3, 3}];

Post - selection :

�������� ρpost[t_] := rt1[t]  rt1[t][[2, 2]] + rt1[t][[3, 3]];

x component of the densitymatrix :

�������� sub1x[t_] := Rert1[t][[2, 3]]  rt1[t][[2, 2]] + rt1[t][[3, 3]]

z component of the densitymatrix :

�������� sub1[t_] := Rert1[t][[2, 2]]  rt1[t][[2, 2]] + rt1[t][[3, 3]]

y component of the densitymatrix :

�������� sub1y[t_] := Imrt1[t][[2, 3]]  rt1[t][[2, 2]] + rt1[t][[3, 3]]

x component of the densitymatrix :

�������� sub2x[t_] := Rert1[t][[3, 2]]  rt1[t][[2, 2]] + rt1[t][[3, 3]]

z component of the densitymatrix :

�������� sub2[t_] := Rert1[t][[3, 3]]  rt1[t][[2, 2]] + rt1[t][[3, 3]]

y component of the densitymatrix :

�������� sub2y[t_] := Imrt1[t][[3, 2]]  rt1[t][[2, 2]] + rt1[t][[3, 3]]

3

������� �� ������� ����������� ������� �������
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Chapter A.Mathematica Simulations

�������� zex = sub1[t] - sub2[t];
xex = sub1x[t] + sub2x[t];
yex = -sub1y[t] + sub2y[t];

Quantumstate tomography during the evolution :

�������� Plot[{Evaluate[sub1[t] - sub2[t]],
Evaluate[sub1x[t] + sub2x[t]], Evaluate[-sub1y[t] + sub2y[t]]},

{t, 0, p}, PlotRange → All, AxesLabel → {time, prob}, PlotLegends →
Placed[{"sigma_z", "sigma_x", "sigma_y"}, {Scaled[{0, .8}], {0, 0.5}}]]

��������

sigma_z
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0.2 0.4 0.6 0.8 1.0 1.2 1.4
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Defininga static non -HermitianHamiltonian :

������ Hc3[t_] := {0, 0, 0}, 0, δp - ⅈ γ  2, Jp, {0, Jp, 0 - δp};

�������� {eval, evec} = Eigensystem[Hc3[t]];

Riemann surface of the real part of the eigenvalues of the static non -
HermitianHamiltonian in terms of J andΔ :

4

������� �� ������� ����������� ������� �������
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Chapter A.Mathematica Simulations

�������� Plot3D[{Re[eval[[2]]], Re[eval[[3]]]}, {Jp, 0, a}, {δp, -12 Pi, 12 Pi},
PlotStyle → {Directive[Yellow, Specularity[White, 20], Opacity[0.6]],

Directive[Blue, Specularity[White, 20], Opacity[0.6]]}, Mesh → None]

��������

Riemann surface of the Imaginary part of the eigenvalues of the static non -
HermitianHamiltonian in terms of J andΔ :

Riemann surface of the Imaginary part of the eigenvalues of the static non -
HermitianHamiltonian in terms of J andΔ :

�������� Plot3D[{Im[eval[[2]]], Im[eval[[3]]]}, {Jp, -3, a + 3}, {δp, -12 Pi, 12 Pi},
PlotStyle → {Directive[Yellow, Specularity[White, 20], Opacity[0.6]],

Directive[Blue, Specularity[White, 20], Opacity[0.6]]}, Mesh → None]

��������

5

������� �� ������� ����������� ������� �������
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