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This thesis discusses the application of dissipative processes in quantum information

processing. Conventionally, dissipative processes bring noises into quantum circuits and

hinder the ability of computation. Here we explore several ways to engineer and utilize

dissipative processes, as a novel approach for quantum information processing. In a single

superconducting qutrit, we observe the topological behaviour of the geometric phase under

the existence of dephasing. In a manybody superconducting qutrit processor, we design the

preparation and stabilization of the AKLT state. By the above examples, we demonstrate the

the power of dissipative processes as a novel and promising approach for quantum information

processing.
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Chapter 1

Superconducting cQED

This chapter first introduces the Josephson junction, which is an important component in the

engineering of superconducting circuits. We then describe the structure of a superconducting

transmon and its interaction with the light field confined in a linear microwave cavity.

1.1 The Josephson Junction

Tunneling devices are ubiquitous in application as important components of electric circuits.

Josephson discovered that in addition to electrons, Cooper pairs formed in superconductors

can also have tunneling behaviors [1]. The Josephson effect happens when the system consists

two or more superconductors coupled by a weak link, e.g. a thin insulating barrier or a section

of normal metal. Here we consider the simplest situation, where two superconductors with

Fig. 1.1: Diagram of an example of the Josephson junction A Josephson junction
formed by two pieces of same-material superconductors (blue) separated by a thin
insulating layer (orange).

2



Chapter 1. Superconducting cQED

the same material are separated by a thin layer of insulator. For superconductors, we can

assume a common wave function for all the Cooper pairs as Ψ1 = √
n1e

iϕ1 on one side and

Ψ2 = √
n2e

iϕ2 on the other, as is shown in Fig. 1.1. Here n1(2) are the number density of the

Cooper pairs and ϕ1(2) are the phases on the two sides of superconductors. Considering the

tunneling process, we have relation between the two wave functions


iℏ
∂Ψ1

∂t
= eVΨ1 +KΨ2

iℏ
∂Ψ2

∂t
= −eVΨ2 +KΨ1

, (1.1)

when a voltage V is applied through the junction. Here the energy difference caused by one

Cooper pair is 2eV , and we set the middle point as the zero energy point. The parameter

K features the characteristic of the junction for the tunneling event. Putting Ψ1 = √
n1e

iϕ1

and Ψ2 = √
n2e

iϕ2 into Equation 1.1, we get the relation between the phases and the number

densities such that



ṅ1 = +2
ℏ
K

√
n2n1 sinϕ

ṅ2 = −2
ℏ
K

√
n2n1 sinϕ

ϕ̇1 = −K

ℏ

√
n2

n1
cosϕ− eV

ℏ

ϕ̇2 = −K

ℏ

√
n1

n2
cosϕ+ eV

ℏ

. (1.2)

Here we note that ϕ2 −ϕ1 = ϕ. Although the number density of Cooper pairs varies through

time, we should notice here that the imbalance of carriers is much smaller compared to the

total number of carriers in the superconducting islands. This can be seen with a simple

estimation for a typical Josephson junction in use, e.g. the ones used for Transmon qubits,

which we will discuss later. Such restrictions on the particle number difference is put by

the constraint that the chemical potential difference must be less than the quasiparticle gap.

Thus, here for the case of superconducting Josephson junction, we are just working within

3



Chapter 1. Superconducting cQED

the small imbalance limit of the model. To access a larger range of parameters for this

model, e.g. the regime of “self-trapping”, we have to make observations in the so-called Bose

Josephson junction system [2]. Anyways, back to Equation 1.2 with this important new

approximation we just got, n1 ≈ n2 ≈ n0, where n0 is the normal density of carriers in the

superconducting material, the voltage-current relation could be obtained that


J = 2eṅ1 = 4eK

ℏ
n0 sinϕ = J0 sinϕ

V = ℏ
2eϕ̇ = Φ0

2π ϕ̇
. (1.3)

Notice here that the inductance of the Josephson junction is thus

L = V

J̇
= ℏϕ̇

2eJ0 cosϕϕ̇
= ℏ

2eJ0

1
cosϕ = L0

cosϕ = L0√
1 −

(
J
J0

)2
= L(J), (1.4)

where the inductance depends on the value of current and thus brings on nonlinear effects.

Such nonlinear response makes the Josephson junction a perfect and simple choice for a

nonlinear circuit element when no dissipation is desired.

Now we explore the relation between the two variables capturing the Josephson junction,

the Cooper pair tunneling through, n, and the phase difference, ϕ. Since the energy for the

Josephson junction part, U , has the time derivative dU/dt = JV = (J0ℏ/2e)(sinϕ)ϕ̇, then

it should be U = −EJ cosϕ up to a constant, which is not important. We obtain the total

Hamiltonian in this situation,

H = −EJ cosϕ− 2eV n (1.5)

where EJ = J0ℏ/2e. From Equation 1.3 we already have


ṅ = J0

2e sinϕ = EJ

ℏ
sinϕ = 1

ℏ
∂H

∂ϕ

ϕ̇ = 2eV
ℏ

= −1
ℏ
∂H

∂n

, (1.6)

4



Chapter 1. Superconducting cQED

Fig. 1.2: Diagram of harmonic and anhamonic energy levels The black dashed lines
features the quadratic potential and equally spaced energy levels of a harmonic
oscillator. The blue lines features the potential beyond quadratic terms, and the
unequally spaced energy levels with an anharmonicity, −α.

so it is natural to observe that n and ϕ are conjugate variables. For example, for a typical

pair of conjugate variables x and p, we have that ẋ = ∂H/∂p, ṗ = −∂H/∂x, which results

in relation [x̂, p̂] = iℏ when migrating to the quantum descriptions. By a similar process, we

can obtain that [n̂, ℏϕ̂] = iℏ and thus [n̂, ϕ̂] = i in quantum descriptions.

1.2 Superconducting Transmon

Making qubit/qudit requires such nonlinear elements without dissipation as we mentioned

in the previous section. If the circuit is totally constructed by linear elements, e.g. by linear

capacitance and inductance, it will form a harmonic oscillator, where the spacings between

adjacent energy levels are identical. In that case, when a coherent drive is applied to the

ground state of the oscillator, we can only get coherent states, which is basically classical.

Only by introducing nonlinear elements, can the anharmonicity be realized, where the energy

spacings are unequal and thus they could be addressed independently (Fig. 1.2). By applying

coherent drives with certain corresponding frequencies, drives can be only applied between

the ground state and the excited state, forming a two-level system as a qubit. Considering

more energy levels and apply control between them separately, we could obtain a qudit

system.

Applying the Josephson junction as the source of nonlinearity, we hereby introduce a

5



Chapter 1. Superconducting cQED

workhorse qubit/qudit in recent researches, the superconducting Transmon [3]. We consider

the Josephson junction shunted by a large capacitor resulting in total capacitance C for the

entire circuit. This brings an additional term to the Hamiltonian,

Ĥ = 4EC(n̂− ng)2 − EJ cos ϕ̂. (1.7)

Here EC = e2/2C, and ng is the offset charge determined by the gate voltage as well as

the related environmental degree of freedom. In the Transmon regime, different from the

conventional Cooper pair box, we work in the limit that EJ/EC → ∞. This Hamiltonian

is exactly solvable with Mathieu functions [4]. But we can also find the energy levels per-

turbatively assuming that ϕ varies in a small range around a point e.g. ϕ = 0. Viewing

Equation 1.7 as a rotor moving in the cosine potential, it is easy to see that the small ϕ limit

corresponds to large EJ/EC and lower energy levels. Thus, we can find the lower levels of

the Transmon eigenenergy approximating the cosine term to the fourth order,

−EJ cosϕ ≃ −EJ + EJ

2 ϕ2 − EJ

24 ϕ
4. (1.8)

With such approximation the eigenenergies could be written as

Em ≃ −EJ +
√

8ECEJ

(
m+ 1

2

)
− EC

12 (6m2 + 6m+ 3), (1.9)

where the first several energy spacings are E01 = E1 −E0 =
√

8EJEC −EC , E12 = E2 −E1 =
√

8EJEC − 2EC , E23 = E2 − E1 =
√

8EJEC − 3EC , E34 = E2 − E1 =
√

8EJEC − 4EC ,....

The anharmonicity, α = −EC , here gives us independent control between each energy level,

forming a fully controllable multi-level system as the qudit, and also the qubit when we

reduce to the two-level case.

The above calculations are for the simplified model with only one single Josephson junc-

tion in the circuit. Now we consider the case with two Josephson junctions connected in

6



Chapter 1. Superconducting cQED

parallel, which brings us a flux degree of control [5]. The energy across the two Josephson

junctions, which could also be asymmetric, here becomes

−EJ cos ϕ̂ → −EJ1 cos ϕ̂1 − EJ2 cos ϕ̂2. (1.10)

When we consider the superconducting ring under a magnetic field, we generally replace the

operator (ℏ/i)∆ with (ℏ/i)∆−2eA. Thus, assuming that the carrier density varies negligibly,

for the wave function, e.g.
√
n1(r⃗)eiϕ1(r⃗), we have the current

J⃗ = ℏ
m

(
∇⃗ϕ1(r⃗) − 2e

ℏ
A⃗
)
n1(r⃗), (1.11)

where m is the mass and A⃗ is the vector potential. Also assuming that the current density

in the superconducting body is zero, we have

∮
∇⃗ϕ1(r⃗) · ds⃗ = 2e

ℏ

∮
A⃗ · ds⃗ = 2πΦ

Φ0
, (1.12)

where Φ =
∮
A⃗ · ds⃗ is the magnetic flux across the ring. Then we have the relation between

the two phase changes across the two Josephson junctions,

ϕ1 − ϕ2 = 2πn+ 2πΦ
Φ0

. (1.13)

Then the Hamiltonian can be written as ĤJ(Φ) = −E ′
J(Φ) cos (ϕ̂− ϕ0), where

E ′
J(Φ) = EJΣ cos

(
πΦ
Φ0

)√√√√1 + d2 tan2
(
πΦ
Φ0

)
, tanϕ0 = d tan

(
πΦ
Φ0

)
. (1.14)

Here EJΣ = EJ1+EJ2 and d = (α−1)/(α+1), where α = EJ1/EJ2 assuming that EJ1 > EJ2.

Obviously, the tunability increases as the difference in junction energies decreases. Such qubit

with flux-tunable frequencies are the basis for the implementation discussed in Section 5.3.2.

With either fixed or flux-tuable qudit/qubit in an equivalent form, we can check its inter-

7



Chapter 1. Superconducting cQED

action with the electromagnetic field confined in a superconducting resonator. Considering

the voltage felt by the Transmon, we have [3, 6]

Ĥ = 4EC(n̂− ng)2 − EJ cos ϕ̂+ ℏωrâ
†â+ V0n̂(â+ â†). (1.15)

Here V0 is a parameter determined by the root-mean-square voltage of the local oscillator as

well as the capacitance for the structure of the circuit. ωr/2π is the resonance frequency of

the resonator and â†(â) is the creation (annihilation) operator of the photons in the resonator.

Writing the Cooper pair number operator in the basis of the Transmon eigenstates, we find

that

n̂ =
∑
i,j

nij|i⟩⟨j|, nij = ⟨i|n̂|j⟩. (1.16)

From asymptotic results same as in Equation 1.8, we see the above matrix elements as

|⟨j + 1|n̂|j⟩| ≃
√
j + 1

2

(
EJ

8EC

)1/4

|⟨j + k|n̂|j⟩| → 0, |k| > 1.
(1.17)

Thus, after rotating wave approximation, we obtain the effective generalized Jaynes-Cummings

Hamiltonian

Ĥ = ℏ
∑

j

ωj|j⟩⟨j| + ℏωrâ
†â+

(
ℏ
∑

i

gi,i+1|i⟩⟨i+ 1|â† + h.c.

)
. (1.18)

1.3 The dispersive regime

For a Transmon qudit dispersively coupled to a linear cavity [6, 7], as we approach the limit

that Ej ≫ Ec, and apply the rotating wave approximation, the system Hamiltonian should

8



Chapter 1. Superconducting cQED

be,

Ĥ = Ĥ0 + V̂,

Ĥ0 = ℏ
∑

j

ωj|j⟩⟨j| + ℏωrâ
†â,

V̂ = ℏ
∑

i

gj,j+1(|j⟩⟨j + 1|â† + |j + 1⟩⟨j|â).

(1.19)

Here the coupling strength gi,i+1 ≈
√
i+ 1g0 is proportional to the non-zero element of the

Cooper pair number operator. [3] [depends on introductions of notions before] In the dis-

persive limit, the detuning between adjacent energy level differences of the qutrit is much

larger than the coupling strengths. This allows us to perform the Schrieffer-Wolff transfor-

mation, which can approximately diagonalize the system Hamiltonian in the dispersive limit,

Ĥeff = e−ŜĤeŜ, with

Ŝ =
∑

i

λi(|i+ 1⟩⟨i|â− |i⟩⟨i+ 1|â†), (1.20)

where λi = gi,i+1/(ωi,i+1 − ωr), and ωi,i+1 = ωi+1 − ωi. From

[â, â†â] = â, [â†, â†â] = −â†, [|i+ 1⟩⟨i|, |j⟩⟨j|] = δi,j|i+ 1⟩⟨i| − δi+1,j|i+ 1⟩⟨i|

[|i⟩⟨i+ 1|, |j⟩⟨j|] = δi+1,j|i⟩⟨i+ 1| − δi,j|i⟩⟨i+ 1|
(1.21)

we can have

[Ŝ, Ĥ0] = ℏ
∑

i

λi(−ωi+1 + ωi + ωr)(|i+ 1⟩⟨i|â+ |i⟩⟨i+ 1|â†), (1.22)

here the relation [Ŝ, Ĥ0] + V̂ = 0 stands. Also, from the Baker-Campbell-Hausdorff relation,

there is Ĥeff = Ĥ0 + V̂ + [Ŝ, Ĥ0] + [Ŝ, V̂ ] + 1
2 [Ŝ, [Ŝ, Ĥ0]] + 1

2 [Ŝ, [Ŝ, V̂ ]] + .... Then we have,

9



Chapter 1. Superconducting cQED

Ĥeff = Ĥ0 + 1
2 [Ŝ, V̂ ] +O(λ2). In that sense we calculate [Ŝ, V̂ ], from

[|i+ 1⟩⟨i|â, |j + 1⟩⟨j|â] = δi,j+1|i+ 1⟩⟨i− 1|ââ− δi+1,j|i+ 2⟩⟨i|ââ, and

[|i+ 1⟩⟨i|â, |j⟩⟨j + 1|â†] = δi,j|i+ 1⟩⟨i+ 1| − â†â(δi,j|i+ 1⟩⟨i+ 1| − δi,j|i⟩⟨i|),
(1.23)

we can have,

[Ŝ, V̂ ] = ℏ
∑

i

(λi+1gi,i+1 − λigi+1,i+2)(|i+ 2⟩⟨i|ââ+ |i⟩⟨i+ 2|â†â†)

+2ℏ
∑

i

χi,i+1|i+ 1⟩⟨i+ 1| + 2ℏ
∞∑

i=1
(χi−1,i − χi,i+1)|i⟩⟨i|â†â− 2ℏχ0,1|0⟩⟨0|â†â.

(1.24)

With the two-photon transition term involving ââ and â†â† small and can be omitted, the

final Hamiltonian becomes,

Heff = ℏ
∑

j

ωj|j⟩⟨j| + ℏωrâ
†â+ ℏ

∑
i

χi,i+1|i+ 1⟩⟨i+ 1|

+ℏ
∞∑

i=1
(χi−1,i − χi,i+1)|i⟩⟨i|â†â− ℏχ0,1|0⟩⟨0|â†â

(1.25)

Here χi,i+1 is defined as λigi,i+1 which is g2
i,i+1/(ωi,i+1 − ωr). We can see that, for a su-

perconducting qudit interacting with cavity modes in the dispersive limit, the energy-level-

dependent shifts for the cavity resonance frequency take the form similiar to the case where

a two-level system is coupled to the cavity. The term in the second line of the equation,

which involves |i⟩⟨i|â†â, can be explained both as a shift in the cavity frequency dependent

on the state of the qudit, or as a shift in the qudit energy levels dependent on the number

of photons in the cavity. Due to reduced aharmonicity for a superconducting transmon de-

sign, higher level cavity shifts interfere with each other, resulting in the cavity shift between

ground state |0⟩ and the first excited state |1⟩ as 2χ0,1 −χ1,2, and, for i ≥ 1, the cavity shift

between state |i⟩ and state |i+ 1⟩ as 2χi,i+1 − χi−1,i − χi+1,i+2.

10
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1.4 Relaxation and dephasing of the Transmon qubit

Here we consider the intrinsic dissipation channels for a typical single Transmon qubit.

With the descriptions inherited from the NMR case [8], superconducting qubits dissipation

channels are dominated by the longitudinal relaxation (depolarization) rate Γ1 = T−1
1 and

the transverse relaxation (dephasing) rate Γ2 = T−1
2 . The qubit relaxation time, T1, is

characterized by the diagonal term of the density matrix, ρee(t) = ρee(0)e− t
T1 , which reflects

random relaxation event from state |e⟩ to state |g⟩, emitting energy in the form of photons

into the environment. The qubit dephasing time, T2, is characterized by the cross term of

the density matrix, |ρge(t)| = |ρge(0)|e− t
T2 , which reflects fluctuations in the energy levels

due to variations in the parameters, e.g. offset charge, flux, EC or EJ . Here, the dephasing

process consists of contributions from the longitudinal relaxation rate, Γ1, and from the pure

dephasing rate, Γϕ = T−1
ϕ , with relation Γ2 = Γ1/2 + Γϕ. This could also be reflected in the

Lindblad master equation [9],

ρ̇ = Lρ = Γ1D[σ̂−]ρ+ Γϕ

2 D[σ̂z]ρ, (1.26)

where D[L̂]ρ = (2L̂ρL̂† − L̂†L̂ρ− ρL̂†L̂)/2, σ̂z is the Pauli operator and σ̂− = |g⟩⟨e|.

For a qudit, the noise constituents could be more complex than the qubit case. For the

relaxation process from state |i⟩ to state |j⟩ (i > j), there are certain selection rules for the

main relaxation mechanisms. For example, for spontaneous emission altered by the presence

of the resonator, namely the Purcell effect, its rate in the dispersive limit in the absence of

cavity photons is Γi,i+1
1 ∝ g2

i,i+1/(ωi,i+1 − ωr)2 [3] before Purcell filtering. This dominating

relaxation process poses selection rules contributing to spontaneous emission only from state

|i + 1⟩ to state |i⟩. Meanwhile, since the coupling strengths associated with higher levels

increase as gi,i+1 =
√
i+ 1g0, the relaxation rate related to this mechanism scales linearly

with the level number involved, which indicates shorter relaxation time between higher levels.

In the Lindblad master equation, to count for the spontaneous emission process for a single

11
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qudit, we can substitute the qubit term

Γ1D[σ̂−]ρ →
∑

i

Γi,i+1
1 D[σ̂i,i+1

− ]ρ, (1.27)

where σ̂i,i+1
− = |i⟩⟨i+1|. In the qutrit case, for example, we could hereby mainly consider the

energy relaxation directly from state |e⟩ to state |g⟩ or from state |f⟩ to state |e⟩, omitting

the two-level energy relaxation directly from state |f⟩ to state |g⟩, which should be smaller

according to noise analysis. This is adapted in Section 3.4.2.3.

For the dephasing processes, we mainly consider the fluctuations on the qudit energy

levels to obtain the pure dephasing rate between each two levels. Away from the sweet spot

of a certain parameter α, we consider the system Hamiltonian in the rotating frame for the

averaged energy levels,

δH = ℏ
∑

i

δωi|i⟩⟨i| = ℏ
∑

i

∂ωi

∂α
δα|i⟩⟨i|, (1.28)

with δα being a parameter fluctuating around according to the environment noise spectrum.

At the sweet spot of parameter α, we have ∂ωi/∂α|α=α0 = 0, then the system Hamiltonian

fluctuates as

δH = ℏ
∑

i

δωi|i⟩⟨i| = ℏ
∑

i

∂2ωi

∂α2
δα2

2 |i⟩⟨i|. (1.29)

Here, according to Bloch-Redfield theory [10, 11, 8], for noise spectrum defined well around

ω = 0, the dephasing is of the exponential form, written as ρij(t) = ρij(0) exp
(
−Γij

ϕ t
)
. From

the same noise source, the induced dephasing rate between each two levels are quadratic to

the corresponding derivative of the energy difference, in form of Γij
ϕ = γ(1)

α (∂ωij/∂α)2|α=α0

away from the sweet spot and Γij
ϕ = γ(2)

α (∂2ωij/∂α
2)2|α=α0 at the sweet spot. Phenomenally,

this dephasing process can be described in the Lindblad master equation as,

Γϕ

2 D[σ̂z]ρ → 2γ(1)
α D

[∑
i

∂ωi

∂α
|i⟩⟨i|

]
ρ, (1.30)

12
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for the parameter α away from the sweet spot, and as,

Γϕ

2 D[σ̂z]ρ → 2γ(2)
α D

[∑
i

∂2ωi

∂α2 |i⟩⟨i|
]
ρ, (1.31)

for the parameter α at the sweet spot. However, in quantum experiments, the existence of

1/f noise is ubiquitous, which has a divergent behaviour in the noise spectrum around ω = 0.

By further calculations, this gives us dephasing in the form of ρij(t) = ρij(0) exp
(
−Γij

ϕ

2
t2
)

[3, 8]. By similar scaling behaviours in Γij
ϕ

2 for the derivatives of the energy level differences,

we have the induced dephasing rate as Γij
ϕ =

√
γ

(1)
α ∂ωij/∂α|α=α0 away from the sweet spot

and Γij
ϕ (t) =

√
γ

(2)
α ∂2ωij/∂α

2|α=α0 at the sweet spot. Still phenomenally, this process could

be described by the Lindblad master equation with time-dependent parameters. For the

parameter away from the sweet spot, the Lindbladian becomes,

Γϕ

2 D[σ̂z]ρ → 4γ(1)
α tD

[∑
i

∂ωi

∂α
|i⟩⟨i|

]
ρ, (1.32)

and for the parameter at the sweet spot,

Γϕ

2 D[σ̂z]ρ → 4γ(2)
α tD

[∑
i

∂2ωi

∂α2 |i⟩⟨i|
]
ρ. (1.33)

Such description applies to several parameters causing the energy level fluctuations as is

mentioned before. The above equivalent behaviors between the noise description and the

Lindblad master equation was confirmed by simulations in Qutip [12, 13] and in HOQST

[14], with the latter having specific function of modelling 1/f noise stochastically with fluc-

tuating Hamiltonians. Since those dephasing mechanisms need more characterization, we

just consider a very rough noise model in Section 3.4.2.3 corresponding to the dephasing

process, where the dephasing operator σ̂z is considered between adjacent states, in order to

roughly simulate the noise levels.

13
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1.5 Quantum non-demolition measurement in the

dispersive regime

Starting from Eqn. 1.25, here we apply an additional term for the cavity probe with detuning

∆ from the shifted cavity frequency. We thus have the Hamiltonian simply written as

Heff = ℏ
∞∑

i=0
χi|i⟩⟨i|â†â+ ℏϵ(â† + â) + ℏ∆â†â, (1.34)

in the rotating frame of the cavity probe and qudit frequencies. Considering the dissipation

of the cavity photon for a finite cavity linewidth (FWHM), κ, and ignoring the intrinsic

qudit dephasing and relaxation at this point, we have the Lindblad master equation [9] as

ρ̇ = Lρ = − i

ℏ
[Heff , ρ] + κD[â]ρ, (1.35)

where D[L̂]ρ = (2L̂ρL̂† − L̂†L̂ρ − ρL̂†L̂)/2. Following the argument in previous work [15]

going beyond the Gaussian approximation, we have the time-evolved full density matrix for

the qudit-cavity system as

ρ =
∑
i,j

ρ̂ij ⊗ |i⟩⟨j|. (1.36)

Then we obtain the differential equations for ρ̂ij,

˙̂ρij = −i(χiâ
†âρ̂ij − χj ρ̂ij â

†â) − iϵ[â† + â, ρ̂ij] − i∆[â†â, ρ̂ij] + κD[â]ρ̂ij. (1.37)

Now we assume the density matrices as

ρ̂ij = cij(t)|αi(t)⟩⟨αj(t)|, (1.38)

14
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to solve the above equations. Still we have the relations

â|α⟩ = α|α⟩, â†|α⟩ =
(
∂α + α∗

2

)
|α⟩. (1.39)

Putting Equation 1.38 into Equation 1.37, we obtain that

ċij(t)|αi(t)⟩⟨αj(t)| + cij(t)|α̇i(t)⟩⟨αj(t)| + cij(t)|αi(t)⟩⟨α̇j(t)|

= cij(t)
[
−i
(
χi + ∆ − κ

2 i
)
â†â|αi(t)⟩⟨αj(t)| + i

(
χj + ∆ + κ

2 i
)

|αi(t)⟩⟨αj(t)|â†â

−iϵ(â† + â)|αi(t)⟩⟨αj(t)| + iϵ|αi(t)⟩⟨αj(t)|(â† + â) + κâ|αi(t)⟩⟨αj(t)|â†
]

= cij(t)
[
−i
(
χi + ∆ − κ

2 i
)
αi(t)â†|αi(t)⟩⟨αj(t)| − iϵ(â† + αi(t))|αi(t)⟩⟨αj(t)|

+ i
(
χj + ∆ + κ

2 i
)
α∗

j (t)|αi(t)⟩⟨αj(t)|â+ iϵ|αi(t)⟩⟨αj(t)|(α∗
j (t) + â)

+καi(t)α∗
j (t)|αi(t)⟩⟨αj(t)|

]
= cij(t)

[
−i
(
χi + ∆ − κ

2 i
)
αi(t)∂α|αi(t)⟩⟨αj(t)| − iϵ∂α|αi(t)⟩⟨αj(t)|

+ i
(
χj + ∆ + κ

2 i
)
α∗

j (t)|αi(t)⟩∂α∗⟨αj(t)| + iϵ|αi(t)⟩∂α∗⟨αj(t)|

− i
(
χi + ∆ − κ

2 i
)
αi(t)α∗

i (t)
2 |αi(t)⟩⟨αj(t)| − iϵ

(
α∗

i (t)
2 + αi(t)

)
|αi(t)⟩⟨αj(t)|

+ i
(
χj + ∆ + κ

2 i
) αj(t)α∗

j (t)
2 |αi(t)⟩⟨αj(t)| + iϵ

(
αj(t)

2 + α∗
j (t)

)
|αi(t)⟩⟨αj(t)|

+καi(t)α∗
j (t)|αi(t)⟩⟨αj(t)|

]
.

(1.40)

Notice that we have the derivatives of the coherent states written as

|α̇i(t)⟩ = α̇i(t)∂α|αi(t)⟩ + α̇∗
i (t)∂α∗|αi(t)⟩ = α̇i(t)∂α|αi(t)⟩ − αi(t)α̇∗

i (t)
2 |αi(t)⟩. (1.41)

We first put forward the differential equations for those coherent states,

α̇i(t)∂α|αi(t)⟩⟨αj(t)| = −i
(
χi + ∆ − κ

2 i
)
αi(t)∂α|αi(t)⟩⟨αj(t)| − iϵ∂α|αi(t)⟩⟨αj(t)|,

α̇i(t)∂α|αi(t)⟩⟨α̇j(t)| = i
(
χj + ∆ + κ

2 i
)
α∗

j (t)|αi(t)⟩∂α∗⟨αj(t)| + iϵ|αi(t)⟩∂α∗⟨αj(t)|.
(1.42)
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Such relations are equivalent to that

α̇i(t) = −i
(
χi + ∆ − κ

2 i
)
αi(t) − iϵ, α̇∗

j (t) = i
(
χj + ∆ + κ

2 i
)
α∗

j (t) + iϵ. (1.43)

Also we have the differential equations for the coefficients as

ċij(t)|αi(t)⟩⟨αj(t)| − αi(t)α̇∗
i (t)

2 cij(t)|αi(t)⟩⟨αj(t)| −
α̇j(t)α∗

j (t)
2 cij(t)|αi(t)⟩⟨αj(t)|

=
[
−i
(
χi + ∆ − κ

2 i
)
αi(t)α∗

i (t)
2 |αi(t)⟩⟨αj(t)| − iϵ

(
α∗

i (t)
2 + αi(t)

)
|αi(t)⟩⟨αj(t)|

+ i
(
χj + ∆ + κ

2 i
) αj(t)α∗

j (t)
2 |αi(t)⟩⟨αj(t)| + iϵ

(
αj(t)

2 + α∗
j (t)

)
|αi(t)⟩⟨αj(t)|

+καi(t)α∗
j (t)|αi(t)⟩⟨αj(t)|

]
cij(t).

(1.44)

We then assume the form of the coefficients as

cij(t) = aij(t)
⟨αj(t)|αi(t)⟩

= aij(t)e
1
2 (|αj(t)|2+|αi(t)|2−2α∗

j (t)αi(t)). (1.45)

Then we have the differential equation for the coefficients as

ȧij(t)
aij(t)

cij(t) +
(
α̇i(t)α∗

i (t) + αj(t)α̇∗
j (t)

2 − α̇∗
j (t)αi(t) − α∗

j (t)α̇i(t)
)
cij(t),

=
{[

−i
(
χi + ∆ − κ

2 i
)
αi(t) − iϵ

]
α∗

i (t)
2 +

[
i
(
χj + ∆ + κ

2 i
)
α∗

j (t) + iϵ
]
αj(t)

2

−
(

−iϵ− κ

2αi(t) − i∆αi(t)
)
α∗

j (t) −
(
iϵ− κ

2α
∗
j (t) + i∆α∗

j (t)
)
αi(t)

}
cij(t)

=
[
α̇i(t)α∗

i (t)
2 +

αj(t)α̇∗
j (t)

2 − α̇i(t)α∗
j (t) − α̇∗

j (t)αi(t) + i(χj − χi)αi(t)α∗
j (t)

]
cij(t),

(1.46)

which is equivalent to that

ȧij(t)
aij(t)

= i(χj − χi)αi(t)α∗
j (t). (1.47)
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Up till now, we have obtained the time-evolved full density matrix as

ρ(t) =
∑
i,j

cij(t)|i⟩⟨j| ⊗ |αi(t)⟩⟨αj(t)|, (1.48)

with the coefficients being

cij(t) = aij(t)
⟨αj(t)|αi(t)⟩

, aij = exp
{(
i(χj − χi)

∫ t

0
αi(t′)α∗

j (t′)dt′
)}
. (1.49)

Notice that for i = j, which denotes a diagonal term in the density matrix, cij(t) ≡ 1,

meaning that the state population undergoes no relaxation for this channel. For longer time

where κt ≫ 1, the cavity reaches equilibrium state for each qudit state,

αs
i = −ϵ

χi + ∆ − κ
2 i
. (1.50)

In this limit, the qudit get dephased between state |i⟩ and state |j⟩ by the measurement

process, with rate Γij
m = (χj −χi) Im(αs

iα
s
j

∗) = Dij
s κ/2, where Dij

s = |αs
i −αs

j |2 measures the

distinguishability of the cavity states |αs
i ⟩ and |αs

j⟩. Thus, for such measurement induced

dephasing, the Lindbladian in corresponding rotating frame is

ρ̇ = Lρ = κ

2D[Â]ρ+ κ

2D[Â†]ρ, (1.51)

where the jump operator Â = ∑
i α

s
i |i⟩⟨i|.

In Section ??, we consider the partial measurement scheme as is shown in Fig. 2.2 (b) and

(c). For paritial measurement on state |k⟩, we require that |χi − χk| ≫ κ for any i ̸= k, and

also we tune the cavity probe to be exactly on resonance with the shifted cavity frequency

for state |k⟩, ∆ = −χk. Thus, the steady state cavity response for state |k⟩ is αs
k = −2ϵi/κ,

while for other states |i ̸= k⟩ the cavity response is approximately αs
i ≃ −ϵ/(χi − χk) as

|χi − χk|/κ → ∞. In this case, the measurement-induced dephasing rates between state |k⟩
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and other states are Γik
m ≃ 2ϵ2/κ, which is a finite value, while the dephasing rates between

two other states are Γij
m ≃ 0. By such arragement of cavity parameters and cavity probes,

we are able to only selectively dephase one state while keeping the coherence between all the

other states, demonstrating a partial measurement. For such partial measurement process,

the Lindbladian in corresponding rotating frame is

ρ̇ = Lρ = κ

2D[Â]ρ+ κ

2D[Â†]ρ, (1.52)

where the jump operator can be set to Â = |αs
k||k⟩⟨k|.
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Chapter 2

Decoherence induced geometric phase

2.1 The geometric phase

As was systematically pointed out by Berry [16], the overall phase of a quantum system

accumulates under an adiabatic evolution. This accumulated phase factor is additional to

the phase accumulation due to the dynamics of the Hamiltonian itself, dependent on the

geometric feature of the evolution path in parameter space. While adding an overall phase

to a quantum system does not change the expectation values of a local observable, we are still

able to observe this phase factor via interference with another quantum system undergoing

a different path [17].

Consider an adiabatic evolution of the Hamiltonian dependent on a vector in parameter

space, Ĥ(R⃗(t)), the system state |ψ(t)⟩ evolves as,

Ĥ(R⃗(t))|ψ(t)⟩ = iℏ|ψ̇(t)⟩. (2.1)

With the Hamiltonian changing with time slowly enough, the system starting from an

eigenstate, |ψ(0)⟩ = |n(R⃗(0))⟩, of the Hamiltonian, Ĥ(R⃗(0)), will stay in the eigenstate,

|ψ(t)⟩ = |n(R⃗(t))⟩, of the Hamiltonian, Ĥ(R⃗(t)), assuming that no crossing happens be-

tween any two energy levels. Such evolution gives us that

Ĥ(R⃗(t))|n(R⃗(t))⟩ = En(R⃗(t))|n(R⃗(t))⟩, (2.2)
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and thus the expression for the system state as,

|ψ(t)⟩ = exp
{−i

ℏ

∫ t

0
dt′En(R⃗(t′))

}
exp(iγn(t))|n(R⃗(t))⟩. (2.3)

Plugging Eqn. 2.3 into Eqn. 2.1, we have

Ĥ(R⃗(t))|ψ(t)⟩ = En(R⃗(t)) exp
{−i

ℏ

∫ t

0
dt′En(R⃗(t′))

}
exp(iγn(t))|n(R⃗(t))⟩,

iℏ|ψ̇(t)⟩ = iℏ
−i
ℏ
En(R⃗(t)) exp

{−i
ℏ

∫ t

0
dt′En(R⃗(t′))

}
exp(iγn(t))|n(R⃗(t))⟩

+iℏiγ̇n(t) exp
{−i

ℏ

∫ t

0
dt′En(R⃗(t′))

}
exp(iγn(t))|n(R⃗(t))⟩

+iℏ exp
{−i

ℏ

∫ t

0
dt′En(R⃗(t′))

}
exp(iγn(t))|ṅ(R⃗(t))⟩,

(2.4)

and thus

γ̇n(t) = i⟨n(R⃗(t))|ṅ(R⃗(t))⟩ = i⟨n(R⃗(t))|∇⃗R⃗n(R⃗(t))⟩ · ˙⃗
R(t), (2.5)

which finally gives us the accumulated geometric phase as

γn(C) = i
∮

C
⟨n(R⃗)|∇⃗R⃗n(R⃗)⟩ · dR⃗ =

∮
C

A⃗n(R⃗) · dR⃗, (2.6)

when the parameter vector R⃗ evolves around a closed path C with R⃗(T ) = R⃗(0) in time

period T . Here we got the definition of Berry connection (Berry potential) as,

A⃗n(R⃗) = i⟨n(R⃗)|∇⃗R⃗n(R⃗)⟩. (2.7)

When the parameter space is three-dimensional, with Stokes’ theorem, such integral over a

closed path C with a encircled surface S can be written as,

γn(C) =
∮

C
A⃗n(R⃗) · dR⃗ =

∫
S

[
∇⃗R⃗ × A⃗n(R⃗)

]
· dS⃗ =

∫
S

Ω⃗n(R⃗) · dS⃗. (2.8)

This gives the definition of Berry curvature in three-dimensional parameter space, Ω⃗n(R⃗) =
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∇⃗R⃗ × A⃗n(R⃗). In higher dimensional case, similarly, the Berry curvature is defined as a

2-form,

Ωn,µν(R⃗) = ∂An,ν(R⃗)
∂Rµ

− ∂An,µ(R⃗)
∂Rν

. (2.9)

2.2 Measurement induced geometric phase

The first findings about measurement-induced geometric phase was decades ago before

Berry’s work on adiabaticity-induced geometric phase, when Pancharatnam pointed out in

1956 [17] that in optical systems, measurement could result in phase difference in the inter-

ference of polarized light beams. In such cases with a sequence of projective measurements

{Pk} on a sequence of states {|ψk⟩} with all-positive outcomes, the resulting quantum state

can be written as

|ψ̃N⟩ = PN ...P2P1|ψ0⟩, Pk = |ψk⟩⟨ψk|, (2.10)

up to normalization. The accumulated geometric phase for a pair of states, |ψj⟩ and |ψk⟩,

can be defined as χ(|ψj⟩, |ψk⟩) = arg[⟨ψj|ψk⟩]. Then the total geometric phase accumulated

in the measurement sequence is

χ(P )
geom = arg[⟨ψ0|ψ̃N⟩] = arg[⟨ψ0|PN ...P2P1|ψ0⟩]. (2.11)

Such Pancharatnam phase induced by projective measurements can be related to Berry’s

adiabatic geometric phase in a way that, the Pancharatnam phase is equal to the Berry phase

accumulated along the shortest geodesics connecting each measurement point in Hilbert

space [18]. Here we consider a sequence of measurements with a more general form, which

are described by weak measurements, {M (rk)
k }, for the kth measurement with corresponding

outcome rk. For a particular string of measurement results, {rk}, the induced geometric
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Fig. 2.1: Measurement induced topological transition in geometric phases. (a)
A sequence of measurements along a fixed latitude drags the state on a trajectory
displayed on the Bloch sphere surface (red line and arrow). When a final projective
measurement closes the path (green arrow), the state acquires a geometric phase
(χ). Considering all latitudes, these trajectories form a closed surface winding
around the Bloch sphere. (b) Weaker measurements result in smaller back action
on the state. The trajectories thus form a closed surface that does not wrap around
the Bloch sphere. (c) Dependence of the geometric phase on the polar angle θ
for the measurement sequences with measurement strengths slightly below (blue
dashed line) and above (black dashed line) the critical value. The black solid line
shows the case of infinitely strong measurements and the blue solid line represents
zero measurement strength, and faint lines indicate intermediate measurement
strengths. The insets illustrate the origin of the transition.
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phase can be written as

χ(M)
geom = arg[⟨ψ0|ψ̃N⟩] = arg[⟨ψ0|M (rN )

N ...M
(rk)
k ...M

(r2)
2 M

(r1)
1 |ψ0⟩]. (2.12)

Now we consider the measurement sequences happening in a two-level system on the

Bloch sphere, which is specified by state |+⟩ and |−⟩. Assume that the unitary rotation

operator Uk connects between |ψk⟩ and |+⟩ with |ψk⟩ = Uk|+⟩, where |+⟩ is along the z

axis of the Bloch sphere. Then the measurement M (rk)
k can be viewed as being along state

|ψk⟩ if M (rk)
k = UkM

(rk)
z U †

k , with M (rk)
z being a weak measurement along the z axis of the

Bloch sphere with outcome rk. As an example, we could consider a model of measurement

where rk ∈ {+,−} with M (+)
z = |+⟩⟨+| +

√
1 − η|−⟩⟨−| and M (−)

z = √
η|−⟩⟨−|. Here the

measurement strength is characterized by η. When η = 0, the weak measurement has no

impact on the system and the outcome is always +. When η = 1, the weak measurement

becomes projective that M (+)
z = |+⟩⟨+| and M (−)

z = |−⟩⟨−|.

By such definition, we could consider a sequence of weak measurements, {M (rk)
k }, along

states |ψk⟩ specified by (θ, ϕk) on the Bloch sphere. Here ϕk distributes evenly between

[0, 2π] defining a measurement sequence around the Bloch sphere along the latitude with

polar angle θ. We also consider the system state after the kth measurement as |ψ̃k⟩ =

M
(rk)
k ...M

(r2)
2 M

(r1)
1 |ψ0⟩, which is specified by (Θk(θ, ϕk),Φk(θ, ϕk)) on the Bloch sphere with

accumulated phase α(θ, ϕk). Notice that Φk does not necessarily keeps constant like ϕ does,

since only the latitude of θ = π/2 is also along a geodesic line. We then consider the quasi-

continuous limit of measurements, where an infinite number of measurements are performed

with ϕk being close to each other with infinite small separations. In that case, we could map

(θ, ϕ) towards (Θ,Φ) from the Bloch sphere surface to a surface formed by measurement-

induced trajectories under postselection. As is studied by Gebhart et. al. [19], the Chern

number can be considered by integration of the Berry curvature over the entire surface in
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the parameter space, where

C ≡ 1
2π

∫ π

0
dθ
∫ 2π

0
dtB̃(θ, t) = 1

2π (χgeom(π) − χgeom(0)) ∈ {0,−1}. (2.13)

Here, such integral of the Berry curvature is equal to the difference between geometric phases

accumulated along latitude θ = 0 and latitude θ = π, which is bounded to be multiples of

2π. This results in discrete values of the Chern number, which is of topological differences

and thus robust against perturbations in the system parameters. Due to system symmetry

such that χgeom(π− θ) = −χgeom(θ), we obtain that χgeom(π/2) = (χgeom(0) +χgeom(π))/2 =

πC ∈ {0,−π}. Here, the topological feature of the system is directly related to the geometric

phase accumulated around the equator, which lies between two discrete values in the strong

measurement limit and the weak measurement limit. Such behaviour indicates an abrupt

transition of the topological feature at a critical value of measurement strength.

In the experimental realization presented in Section 2.3, we approach the above quasi-

continuous limit where six discrete weak measurements are performed along with an addi-

tional final projective measurement. The above measurements are performed along a certain

latitude with polar angle θ, on points with evenly separated azimuthal angles, ϕ. As is

shown in Fig. 2.1, the topological behaviour is still clearly shown for the discrete and exper-

imentally realizable measurement sequences. The values of the geometric phase χ for θ = 0

and θ = π must differ by a multiple of 2π. This difference cannot be changed by continuous

deformation of the dependence of χ on θ. Thus the behaviors above and below the transition

are topologically distinct. The insets illustrate the origin of the transition. For sufficiently

strong measurements the equatorial trajectory circumnavigates the Bloch sphere while for

weak measurements it does not.

24



Chapter 2. Decoherence induced geometric phase

2.3 Experimental realizations

2.3.1 Partial measurements in dispersive limit

Here we consider a superconducting transmon qudit dispersively coupled to a linear cavity,

which is shown in Fig. 2.2(a). This means that for the coupling strength g and cavity-qubit

detuning ∆, we have the condition g2/∆ ≪ 1. From the derivation in Section 1.3, we have

the effective Hamiltonian as,

Heff = ℏωra
†a+

∑
j

ℏωj|j⟩⟨j| +
∑

j

ℏξj|j⟩⟨j|a†a. (2.14)

Here a†(a) is the cavity photon number operator, ℏωj represents the transmon energy on

energy eigenstate |j⟩, and ℏξj is the interaction energy between the cavity eigenstate and

transmon energy level |j⟩. The effect brought by such interaction energy ξj can be viewed

as a qutrit-state-dependent shift on the cavity frequency, enabling quantum non-demolition

weak measurements of the circuit energy states. As is shown in Fig. 2.2(b), with the cavity

probed by a coherent state, the output signal distributes on the quadrature space of the

electromagnetic field depending on the cavity transmission at the measurement frequency.

Assuming that the system starts from an unentangled density matrix ρ̂ = ρ̂q ⊗ ρ̂b =∑
i,j ρij|i⟩⟨j|⊗ ρ̂b, the qudit state gets entangled with the field leaking outside of the cavity as

ρ̂ = ∑
i,j ρij|i⟩⟨j|⊗|αi⟩⟨αj|, which is in consistency with the evolution discussed in Section 1.5.

For signal processing with the Josephson amplifier working as a linear phase-preserving

amplifier, the input-output relation shows [20],

âm = 1√
G
âout

Sig = âin
Sig + i

√
G− 1√
G

âin
Idl

† ≃ âin
Sig + iâin

Idl

† (2.15)

in the limit G ≫ 1, with Îm/σ0 = âm + â†
m, iQ̂m/σ0 = âm − â†

m, and σ0 being the variance

of each field quadrature. Here, we have the the commutation relation with [Im, Qm] = 0,

as well as eigenstate relations with âin
Sig|αi⟩ = αi|αi⟩, âin

Idl|αi⟩ = 0|αi⟩, and Îm|Im, Qm⟩ =
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Fig. 2.2: Experimental realization of partial measurement (a) A superconducting
transmon qubit and a dissipative linear cavity are dispersively coupled. The cavity
shift dependent on the qubit, ξ, is much larger than the cavity linewidth, κ.
(b) When coherently driven, the caivty response acquires qutrit-state-dependent
displacements on the I/Q plane. (c) The cavity transmission is dependent on the
qubit state due to the dispersive interaction. Probing the cavity at the resonance
frequency for one state leads to partial measurement of the state. (d) For fixed
strength of cavity probe, we depict the dephasing rate between each two levels
vs. frequency of the cavity probe. Inset shows a typical Ramsey measurement
pattern. The green arrow marks the chosen frequency for the applied cavity probe.
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Im|Im, Qm⟩, Q̂m|Im, Qm⟩ = Qm|Im, Qm⟩. From the relation between the operators, we could

calculate the overlap between a coherent state |αi⟩ and |Im, Qm⟩ as [20]

⟨Im, Qm|αi⟩ = ξαi
(Im, Qm) = 1√

π

1
2σ0

exp
(

−(Im − Ī(i)
m )2 + (Qm − Q̄(i)

m )2

2(2σ0)2

)
, (2.16)

with αi = Ī(i)
m +iQ̄(i)

m . When the measurement outcome is (Im, Qm), a projective measurement

is applied onto state |Im, Qm⟩. Then the system density matrix, ρ̂ becomes

Mb(Im, Qm)ρ̂M †
b (Im, Qm)

Tr
(
Mb(Im, Qm)ρ̂M †

b (Im, Qm)
) =

∑
i,j ρi,jξαi

(Im, Qm)ξ∗
αj

(Im, Qm)|i⟩⟨j|
Tr
(∑

i,j ρi,jξαi
(Im, Qm)ξ∗

αj
(Im, Qm)|i⟩⟨j|

)⊗|Im, Qm⟩⟨Im, Qm|

(2.17)

after the measurement process, with Mb(Im, Qm) being the projective operator on the field,

Mb(Im, Qm) = |Im, Qm⟩⟨Im, Qm|. Tracing out the outside field, we have the qudit density

matrix

ρ̂q = ρij|i⟩⟨j| →
∑

i,j ρi,jξαi
(Im, Qm)ξ∗

αj
(Im, Qm)|i⟩⟨j|

Tr
(∑

i,j ρi,jξαi
(Im, Qm)ξ∗

αj
(Im, Qm)|i⟩⟨j|

) = M(Im, Qm)ρ̂qM
†(Im, Qm)

Tr (M(Im, Qm)ρ̂qM †(Im, Qm)) .

(2.18)

Here, the Kraus operator acting on the qudit system is

M(Im, Qm) =
∑

i

ξαi
(Im, Qm)|i⟩⟨i| = 1√

π

1
σ

∑
i

e− (r⃗−r⃗i)2

2σ2 |i⟩⟨i| (2.19)

Here r⃗ represents the output signal’s location on the I/Q plane, (Im, Qm), r⃗i is the mean

output signal when the transmon is in the energy eigenstate |i⟩, (Ī(i)
m , Q̄(i)

m ), and σ = 2σ0 is

the total variance of the signal in both quadratures.

Considering the lowest three energy levels, j ∈ {g, e, f}, the Kraus operators can be
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written explicitly as,

M (r⃗)
z =

√
1
π

1
σ


e−(r⃗−r⃗f )2/2σ2 0 0

0 e−(r⃗−r⃗e)2/2σ2 0

0 0 e−(r⃗−r⃗g)2/2σ2

 (2.20)

in energy eigenstate basis. Here r⃗g, r⃗e and r⃗f are the mean output signal when the transmon

is in the energy eigenstates |g⟩, |e⟩ and |f⟩.

2.3.2 Partial measurements in strong dispersive regime

The setup [21] is operated in the strong dispersive regime, where the cavity linewidth κ ≪ ξj.

Fig. 2.2(b) and (c) present that a weak probe of the cavity near the |f⟩ resonance will be

transmitted only if the circuit is in the |f⟩ state, which means that r⃗g ≈ r⃗e ≈ 0 while r⃗f = r⃗0

is a finite value. In the limit ξ ≫ κ the Kraus operators associated with a probe near the

|f⟩ resonance in Equation 2.20 become

M (r⃗)
z =

√
1
π

1
σ


e−(r⃗−r⃗0)2/2σ2 0 0

0 e−r⃗2/2σ2 0

0 0 e−r⃗2/2σ2

 . (2.21)

Such measurement distinguishes the state |f⟩ from both |e⟩ and |g⟩, but does not distinguish

|e⟩ from |g⟩. The selective nature of this measurement architecture allows us to reserve one

energy level (e.g. |g⟩) as a quantum phase reference in order to determine the global phase

accumulated by a state in the {|e⟩ , |f⟩} manifold. Applying such a measurement pulse

ideally gives us dephasing between each two states γef t = γgf t = r⃗2
0

4σ2 and γget = 0.

We characterize the strength and selectivity of the measurement by examining the de-

phasing rates of each pair of states, which is explained in detail in Section 1.5. We drive the

cavity with a weak probe, and perform Ramsey measurement on each pair of levels to deter-
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mine the dephasing rates γge, γef , γgf . In Figure 2.2(d) we display these measured dephasing

rates versus probe frequency. The data show enhanced dephasing at each qutrit-state-dressed

cavity resonance, as expected. We further observe larger background dephasing on the |f⟩

state which is due to the reduced charge noise insensitivity of the higher transmon levels [3].

A cavity probe frequency ωp/2π = 5.6715 GHz therefore allows us to realize measurements

on the {|e⟩ , |f⟩} manifold, while preserving coherence within the {|g⟩ , |e⟩} manifold. The

measurement strength can be tuned via the duration of the measurement for the constant

weak probe. Providing enough amount of dephasing for strong measurements via long wait-

ing time, the probe itself is weak enough so that the averaged photon number in the cavity,

n̄, is below 1. Although number splitting typically happens in the strong dispersive regime

[15], shifting the qubit transition energy by n̄ξ, we can still drive efficient two-level rotations

with Rabi drive that Ω ≫ ξ in the existence of the probe. Thus, such measurement probe

can be always-on and serves as a background, with neglectable influences on the coherent

rotation pulses we apply.

2.3.3 Designed pulse sequences

With the partial measurements descriminating only state |f⟩ from other states, we can now

design experimental pulse sequences. We consider a two-level system consisting the second

and the third energy level of a qutrit. This two-level system undergoes measurements and

gains the geometric phase factor, with basis |e⟩ and |f⟩. The ground state the system, |g⟩,

is utilized here to extract the geometric phase by interference. The partial measurement,

not separating the cavity response from state |g⟩ and state |e⟩, keeps coherence between the

third level and the measured two-level system.

In that case, since all measurements are in the energy eigenstates, they happen along

the z axis of the Bloch sphere defined by the two basis |e⟩ and |f⟩. However, to observe

the topological transition as is described in Section ??, we have to make a sequence of

measurements around the Bloch sphere at an arbitrary latitude. As is shown in Fig. 2.3 (a),
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we utilize two rotation pulses to perform such a measurement process along an arbitrary

axis. Assuming that the measurement direction is along |n⃗⟩ on the Bloch sphere, then the

corresponding Kraus operator for measurement result r⃗ isM (r⃗)
n⃗ = Ψ(r⃗)|n⃗⟩⟨n⃗|+Ψ̃(r⃗)|−n⃗⟩⟨−n⃗|.

The rotation operator is chosen so that R†
n⃗|e⟩ = |n⃗⟩. Then, for the measurement along the

z axis, M (r⃗)
0 = Ψ(r⃗)|e⟩⟨e| + Ψ̃(r⃗)|f⟩⟨f |, we have M (r⃗)

n⃗ = R†
n⃗M

(r⃗)
0 Rn⃗. For |n⃗⟩ represented by

|θ, ϕ⟩ on the Bloch sphere, we note R†
n⃗ as Rθ

ef,ϕ, Rn⃗ as R−θ
ef,ϕ, the three-level measurement

operator along the z axis as Mz, and the measurement operator along |θ, ϕ⟩ axis as Mθ,ϕ in

Fig. 2.3 (b).

We assume that the initial qutrit state is denoted by |ϕi⟩ and the final state after the

measurement sequence is |ϕf⟩. Here we start with a superposition between the reference

state and the measured two-level system, |ϕi⟩ = a
(e)
i |e⟩ + a

(g)
i |g⟩. As is shown in Fig. 2.3 (b),

such initial state is prepared by a π/2 Rabi pulse between state |g⟩ and state |e⟩. Then, the

rotation pulse between state |e⟩ and state |f⟩, Rθ
ef,ϕ=0, takes the two-level subspace onto the

chosen latitude, θ. After that, N weak measurements around the Bloch sphere are carried

out, which is concluded with a projective measurement along the axis of |θ, ϕ = 0⟩, with the

Kraus operator P+
n⃗ = P θ

ϕ=0. Finally we rotate the state from latitude θ back to state |e⟩, in

order to bring it into interference with the reference state, |g⟩. This entire process gives us

|ϕf⟩ = R0P
+
n⃗

N∏
n=1

Mθ,ϕ=−2πin/(N+1)R
†
0|ϕi⟩

= R−θ
ef,ϕ=0(Rθ

ef,ϕ=0PgeR
−θ
ef,ϕ=0)

N∏
n=1

(Rθ
ef,ϕ=−2πin/(N+1)MzR

−θ
ef,ϕ=−2πin/(N+1))R

θ
ef,ϕ=0|ϕi⟩

= PgeR
−θ
ef,ϕ=0

N∏
n=1

(Rθ
ef,ϕ=−2πin/(N+1)MzR

−θ
ef,ϕ=−2πin/(N+1))R

θ
ef,ϕ=0|ϕi⟩.

(2.22)

Here Pge is the projective measurement on subspace {|g⟩, |e⟩}. With |ϕf⟩ = a
(e)
i eiχ|e⟩+a(g)

i |g⟩,

the Ramsey-like pulses between |g⟩ and |e⟩ create interference patterns which is shown in

Fig. 2.3 (c). The phase of the interference pattern measures the accumulated phase χ for the

subspace {|e⟩, |f⟩} and the amplitude of the pattern measures the contrast of the geometric
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phase extracted from an ensemble after the measurement. In the experiment, we chose N = 6

as a reasonable number of weak measurements.

For carrying out such rotation pulses, we apply a Rabi drive near the qubit resonance

frequency to the cavity, which is dispersively coupled to the qubit. With rotating wave

approximation, the system Hamiltonian is,

Ĥ = Ĥ0 + V̂,

Ĥ0 = ℏ
ωq

2 σ̂z + ℏωcâ
†â+ ℏϵr(e−i(ωrt+α)â† + ei(ωrt+α)â),

V̂ = ℏg(σ̂−â
† + σ̂+â).

(2.23)

Here ℏωc and ℏωq are the cavity and qubit energy splittings, ϵr and ωr are the amplitude

and frequency of the Rabi drive on the cavity, and g is the coupling strength between the

qubit and the cavity. As is introduced in section 1.3, in the dispersive limit, the detuning

between the qubit and the cavity is much larger than the coupling strength. Performing the

Schrieffer-Wolff transformation, we have Ĥeff = e−ŜĤeŜ, with

Ŝ = λ(σ̂+â− σ̂−â
†), (2.24)

where λ = g/(ωq − ωc). From

[â, â†â] = â, [â†, â†â] = −â†, [σ̂−, σ̂z] = 2σ̂−, [σ̂+, σ̂z] = −2σ̂+, (2.25)

we can have

[Ŝ, Ĥ0] = ℏλ(ωc − ωq)(σ̂−â
† + σ̂+â) + ℏϵrλ(ei(ωrt+α)σ̂− + e−i(ωrt+α)σ̂+), (2.26)

giving the relation [Ŝ, Ĥ0] + V̂ = O(λ). The Baker-Campbell-Hausdorff relation reveals

Ĥeff = Ĥ0 + V̂ + [Ŝ, Ĥ0] + [Ŝ, V̂ ] + 1
2 [Ŝ, [Ŝ, Ĥ0]] + 1

2 [Ŝ, [Ŝ, V̂ ]] + .... Thus, Ĥeff = Ĥ0 + [Ŝ, Ĥ0] +
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Fig. 2.3: Experimental pulse sequence (a) Measurements at an arbitrary point of the
Bloch sphere are realized with the z axis measurement sandwiched by two rotation
pulses which counter each other. Blue (red) arrows mark the actual (dashed lines)
and effective (solid lines) trajectory of the weak (projective) measurement. (b)
The entire arrangement of the experimental sequence, with six times of weak
measurements around the Bloch sphere with a decreasing azimuthal angle, ϕ, and
a chosen altitulde, θ. (c) Here P (g) is the probability of obtaining outcome g from
the final projective measurement, Πg. From the final interference pattern between
state |g⟩ and |e⟩, we extract the geometric phase, χ, and the interference contrast,
c.

32



Chapter 2. Decoherence induced geometric phase

V̂ + 1
2 [Ŝ, V̂ ] +O(λ2). Then we have,

[Ŝ, V̂ ] = 2ℏgλ[σ̂+â, σ̂−â
†] = 2ℏgλ(|e⟩⟨e| + σ̂zâ

†â) (2.27)

Moving to the corresponding rotating frame with ωr for the qubit and ωc for the cavity, we

drop the fast rotating terms due to large cavity-qubit detuning. The effective Hamiltonian

is obtained as,

Ĥeff = ℏ
ωq + ξ − ωr

2 σ̂z + ℏξσ̂zâ
†â+ ℏϵrλ(eiασ̂− + e−iασ̂+), (2.28)

with ξ = λg = g2/(ωq − ωc). Here we set the Rabi drive frequency to the dressed qubit

resonance frequency, ωr = ωq + ξ. Since the cavity is driven off-resonantly, the qubit-cavity

coupling term takes a higher order of small values ϵ/∆ and λ, we can omit the corresponding

dephasing caused by the Rabi drive. Then, the operator in time interval τ , R̂ = e−i
Ĥeff
ℏ τ can

be written in basis {|e⟩, |g⟩} as

R̂ =

 cos ϵrλτ −i sin ϵrλτe
−iα

−i sin ϵrλτe
iα cos ϵrλτ

 . (2.29)

The conclusion holds for the Rabi drive between state |e⟩ and state |f⟩ since we can inde-

pendently drive adjacent levels due to the aharmonicity. For the rotation pulse R̂θ
ef,ϕ taking

state |e⟩ to state |θ, ϕ⟩ = cos θ
2 |e⟩ + sin θ

2e
iϕ|f⟩, it can be represented in basis {|f⟩, |e⟩} as

R̂θ
ef,ϕ =

 cos θ
2 sin θ

2e
iϕ

− sin θ
2e

−iϕ cos θ
2

 , (2.30)

by choosing α = 3π/2 − ϕ and ϵrλτ = θ/2. As we have shown, such realization of rotation

pulses could prevent the system from generating additional dynamical phases.
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2.3.4 Decoherence induced geometric phase

By now, we have only dealt with weak measurements with a certain series of outcomes

forming a single trajectory. For each measurement with an outcome represented by a vector

r⃗ on the I/Q plane, the Kraus operator for the two level system can be assumed to be

M
(r⃗)
0 =

Ψ̃(r⃗) 0

0 Ψ(r⃗)

 (2.31)

with generality. Here Ψ(r⃗) and Ψ̃(r⃗) are functions satisfying the conditions
∫

Ω Ψ∗(r⃗)Ψ(r⃗) = 1

and
∫

Ω Ψ̃∗(r⃗)Ψ̃(r⃗) = 1. If we consider the overall Kraus operator for the entire three level

system, since there are no measurement or dephasing happening between state |g⟩ and state

|e⟩, the final Kraus operator written in basis of {|f⟩, |e⟩} becomes

M̂ (r⃗)
z =


Ψ̃(r⃗) 0 0

0 Ψ(r⃗) 0

0 0 Ψ(r⃗)

 , (2.32)

consistent with Equation 2.21. As is presented in Equation 2.22, with a certain series of

measurement outcomes, {r⃗1, r⃗2, ..., r⃗k, ...}, we briefly denote the final system state as,

|ϕf⟩ = P̂geR̂0
∏
k

(R̂†
kM̂

(r⃗k)
z R̂k)R̂†

0|ϕi⟩. (2.33)

Since the geometric phase is eventually extracted with the cross term between the interference

state |f⟩ and the basis within the two-level system |e⟩, it is the expectation value of operator

Σ, where Σ = Σx − iΣy = 2|g⟩⟨e|, with

Σx =


0 0 0

0 0 1

0 1 0

 ,Σy =


0 0 0

0 0 −i

0 i 0

 . (2.34)
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Thus we have the definition of the geometric phase and its contrast, extracted from

ceiχ =
∫

Ω
⟨ϕf |Σ|ϕf⟩, (2.35)

with Ω representing all possible sequences of values for {r⃗k}. The operator A projects |ϕf⟩

into the {|g⟩ , |e⟩} subspace, effectively carried out the final projective measurement Pge,

which could be skipped in actual experiment.

Given the initial state |ϕi⟩ = a
(e)
i |e⟩ + a

(g)
i |g⟩, with certain measurement outcomes {r⃗k},

the system is still in pure state |ϕf⟩ = a
(e)
f ({r⃗k}) |e⟩ + a

(g)
f ({r⃗k}) |g⟩. Since all the rotation

operators Rk are in the {|e⟩ , |f⟩} manifold, the coefficient of the reference state |g⟩ becomes

a
(g)
f ({r⃗k}) =

∏
k

Ψ(r⃗k)a(g)
i . (2.36)

Then, the extracted geometric phase becomes

ceiχ = 2
∫

Ω
⟨ϕf | g⟩⟨e |ϕf⟩ = 2

∫
Ω
a

(g)∗
f ({r⃗k})⟨e |ϕf⟩ = 2 ⟨e|

∫
Ω

∏
k

Ψ∗(r⃗k)a(g)∗
i |ϕf⟩

= 2a(g)∗
i ⟨e|

∫
Ω

∏
k

Ψ∗(r⃗k)P̂geR̂0
∏
k

(
R̂†

kM̂
(r⃗k)
z R̂k

)
R̂†

0 |ϕi⟩

= 2a(g)∗
i ⟨e|

∫
Ω
R̂0
∏
k

(
R̂†

kΨ∗(r⃗k)M̂ (r⃗k)
z R̂k

)
R̂†

0 |ϕi⟩ .

(2.37)

Here we note that the whole ensemble is a weighted average according to its Kraus operator

coefficient Ψ(r⃗k) on the {|g⟩ , |e⟩} manifold depending on the measurement outcome, which

is very similar to the case of selective averaging under very strong measurement. Finally we

have

ceiχ = 2a(g)∗
i ⟨e|R0

∏
k

(
R†

kM̃zRk

)
R†

0 |ϕi⟩ , (2.38)
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with the integrated effective Kraus operator

M̃z =
∫

Ω
Ψ∗(r⃗)


Ψ̃(r⃗) 0 0

0 Ψ(r⃗) 0

0 0 Ψ(r⃗)



=


∫

Ω Ψ∗(r⃗)Ψ̃(r⃗) 0 0

0
∫

Ω Ψ∗(r⃗)Ψ(r⃗) 0

0 0
∫

Ω Ψ∗(r⃗)Ψ(r⃗)



=


∫

Ω Ψ∗(r⃗)Ψ̃(r⃗) 0 0

0 1 0

0 0 1

 = M̃{|e⟩,|f⟩}
z ⊗ Î{|g⟩},

(2.39)

where M̃{|e⟩,|f⟩}
z is the null outcome weak measurement operator on the {|e⟩ , |f⟩} manifold,

same as the one considered in previous theory works [19, 22, 23]. And Î{|g⟩} is identity

operator on state |g⟩. Such ensemble averaged Kraus operator has the same form as the

type of weak measurement studied in Section 2.2 with a positive outcome.

Hence, with the internal weighted averaging nature of the partial resolving measurement,

we can extract the geometric phase with an effectively all-positive measurement outcome

sequence, under all range of measurement strength. From now on, we can claim the geometric

phase equivalence relation between a single trajectory under postselected measurements and

the averaged ensemble under measurements without postselection, with the latter equivalent

to pure dephasing between energy levels.

2.3.5 Simulation results

Instead of performing a postselected weak measurement, we can observe the geometric phase

induced with the same form by applying dephasing with rate γ and time interval τ to the

off-diagonal term in the density matrix. The above equivalence of extracted geometric phase
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Fig. 2.4: Decoherence induced topological transition in geometric phase. (a) The
amount of dephasing, which determines the weak measurement strength, is above
the critical value. Upper: Representation of the reduced density matrix for the
subspace spanned by states {|e⟩, |f⟩} during the six weak measurements performed
by dephasing and the one final measurement performed by projection. Lower:
Representation of the reduced density matrix for the subspace spanned by states
{|g⟩, |e⟩} during the process. (b) The amount of dephasing, which determines the
weak measurement strength, is below the critical value.
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between dephasing process and postselected measurement indicates correspondence between

the amount of dephasing performed during each interval, γτ , and the desired measurement

strength, η. When we need to vary the measurement strength below and above the critical

value, the amount of dephasing performed at each measurement is varied instead. For

convenience, we choose to fix the induced dephasing rate, γ, and vary the time interval τ .

In Fig. 2.4, we visualize the change in the system density matrix during the process of six

weak measurements and one final projective measurement. The six weak measurements are

performed by selective dephasing between state |f⟩ and the subspace spanned by {|g⟩, |e⟩}.

And the final projective measurement is performed naturally by the final tomography process.

The evolution is shown on the Bloch sphere for the subspace spanned by states {|e⟩, |f⟩}

(Upper) and by states {|g⟩, |e⟩} (Lower). The density matrices starts from a pure state at

the positive direction of the x axis for both cases. As the density matrix evolves cyclically

inside the Bloch sphere in subspace {|e⟩, |f⟩}, the geometric phase accumulates in subspace

{|g⟩, |e⟩}. For strong measurements shown in Fig. 2.4 (a), the geometric phase gained along

latitudes with polar angle 0 → π varies continuously and ends up at the negative x axis. In

contrast, for weak measurements shown in Fig. 2.4 (a), the continuously varying geometric

phase ends up at the positive x axis. Such behaviour gives us either 0 or π for polar angle

θ = π along the equator. If we consider the polar angle 0 → 2π, the strong measurement

case gives a continuous cyclic evolution around the origin point, while the weak measurement

case fails to circumvent the origin point. Such topologically distinct behaviour gives us

either 0 or 2π for the geometric phase at the same polar angle θ = 2π, at the opposite polar

point. A discrete and abrupt jump of such topological behaviour happens between the strong

measurement and weak measurement cases,

2.3.6 Experimental results

In this experiment, we utilize a superconducting Transmon circuit (EJ/h = 13.015 GHz,

EC/h = 285 MHz) to produce transition frequencies ωge/2π = 5.12487 GHz, ωef/2π =
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4.80788 GHz. The Transmon circuit is embedded in a three-dimensional aluminum mi-

crowave cavity [24] with linewidth κ/2π = 0.841 MHz, where the dispersive interaction

between the Transmon and the cavity causes the cavity frequency to shift from its bare reso-

nance frequency of ωbare/2π = 5.6724 GHz to a state-dependent frequency of ωg/2π = 5.6861

GHz, ωe/2π = 5.6743 GHz, and ωf/2π = 5.6715 GHz. To control and measure the sys-

tem, we employ three microwave generators, with one generator addressing the Transmon

transitions through single-sideband modulation, another contributing the measurement at

frequency ωf , and a final generator operating at ωbare to produce state readout through

the Jaynes-Cummings nonlinearity technique [25]. The qubit/cavity system is embedded in

copper and magnetic shielding and cooled to a base temperature of 10 mK in a dilution

refrigerator. As is shown in Fig. 2.5, the input line is subject to 70 dB of attenuation and

lossy low-pass microwave filtering, while the output stage passed through three cryogenic

circulators before amplification with a HEMT amplifier.

For such experimental setup based on a Transmon circuit, we have to stabilize higher

Transmon states against charge noise. Although a superconducting Transmon circuit is

designed to reduce the charge noise sensitivity of the |e⟩ state exponentially in the ratio

between EJ/h = 13.015 GHz and EC/h = 285 MHz [3], the third energy level |f⟩ may still

be affected by charge noise. We observe both increased dephasing in the {|e⟩ , |f⟩} manifold

(Fig. 2.2), as well as abrupt transitions in the |f⟩ energy and associated fluctuations. We

stabilize the experiment against these fluctuations by tracking the Ramsey pattern in the

{|e⟩ , |f⟩} manifold and sorting the acquired data in a post-processing step.

In order to probe the topological transition we record the geometric phase χ and inter-

ference contrast c for different trajectory latitudes and measurement strength. The results

are displayed in Figure 2.6 and show good agreement with the theory and simulation results

at measurement strengths above, below, and near the topological transition. In the limit

of strong measurement, exp{(−γefτ)} −→ 0 (towards the data points where γefτ ∼ 2 in the

figure), the measurement backaction is sufficient to allow the quantum state to follow the
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Fig. 2.5: The experimental layout in the dilution refrigerator. The Josephson
parametric amplifier (JPA) flux control and pump circuit is meant for weak
measurement readout, but not actively used in the actual experiment since we
achieved equivalence between measurement and dephasing in obtaining the geo-
metric phase.
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Fig. 2.6: Experimental results (a) The geometric phase under varying one-time mea-
surement strength (γτ) gained with sequential measurements along different lat-
titude of the Bloch sphere for polar angle 0 − 2π. (b) The corresponding visibility
of the extracted geometric phases.
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measurement axis, leading to a monotonically increasing geometric phase with the polar

angle. In the weak measurement limit, exp{(−γefτ)} −→ 1 (towards the data points where

γefτ ∼ 0 in the figure), no measurement dynamics occur, thus there is no observed depen-

dence of the geometric phase on the polar angle. Between these two limits we encounter

the topological transition, which appears as a 2π phase winding about a point of zero con-

trast. For θ = π/2, this topological transition occurs as a function of the measurement

strength. Increasing the measurement strength at θ = π/2, we observe an abrupt jump in

the geometric phase of π at a measurement strength of γt ∼ 0.5 associated with the contrast

decreasing to zero. This transition corresponds to the critical measurement strength that

drags the state half way around the Bloch sphere. Near the transition, the state after the

final projection is a mixture of trajectories that either encircled the Bloch sphere, acquiring a

geometric phase of π, and those that did not, acquiring null geometric phase. The resulting

interference contrast therefore goes to zero as seen in Fig. 2.6 (b). For data along latitudes

with polar angles from 0 to π, which is shown in Figure 2.6 (b), the geometric phase gained

with strong enough measurements shows antisymmetrical behavior about the equator. This

is consistent with the theory picture since the encircled solid angles are opposite to each other

for trajectories that are symmetric about the equator plane. Meanwhile, the visibility near

the transition point is also undergoing a dip that is wider and deeper around the equator but

shallower and disappearing for traces near the Bloch sphere polar with θ = 0 or π. This is

also reasonable since the the geometric phase is gradually ill-defined near the transition point

when approching the Bloch sphere equator, where the phase jump eventually happens, while

the visibility is contantly 1 on the Bloch sphere polars,with all the sequential measurements

actually happening at the same point.

To verify the above result, we take into account the dynamical phase gained in such

situation. The quantum evolution in our experiment that takes place over ∼ µs of evolution

is associated with large dynamical phases (on the order of 104 radians). This dynamical phase

is effectively canceled by the natural rotating frames associated with microwave generator
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Fig. 2.7: Subtracting the dynamical part of the accumulated phase (a) The experi-
mental results of accumulated dynamical phases, under the reference measurement
sequences with fixed azimuth angle ϕ = 0. (b) The corresponding contrast for the
reference geometric phase. The dynamical phase here is smooth, indicating that
it is effectively canceled through appropriate rotating frames.
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used to perform Transmon rotations. To confirm this cancellation, we perform a reference

experiment at each data point using rotation sequences with fixed ϕ = 0 instead of the

sequential ϕ = [0,−2π]. The reference experiment makes the same number and strength

of sequential measurements at the same point on the latitude instead of winding around

the Z axis. The observed reference interference phase and contrast are shown in Fig. 2.7,

indicating only ∼ 1 radian residual dynamical phase variation. The observed stripe features

in the reference phase and contrast are likely due to residual dynamical phase associated

with the anharmonicity of the Transmon. This additional phase is in fact averaged to zero

in the experiment with sequential measurements rotating with ϕ = [0,−2π], as is displayed

in Fig. 2.6.
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State stabilization by dissipation

3.1 Overview

Dissipation is usually viewed as undesirable processes in handling quantum information,

which destroys quantum coherence and should be removed by quantum error correction.

However, dissipative processes can also contribute novel elements for quantum information

processing when controlled and engineered [26]. One such application is in preparing a

quantum manybody system into the ground state of a generic manybody Hamiltonian [27], as

initializing the quantum manybody system into a specific state is a prerequisite by quantum

simulation protocols in many cases. This kind of preparation is typically achieved in one

of two ways. One can engineer the system with the interactions of a certain Hamiltonian

and relax the system towards the ground state [28]. However, the appropriate interactions

or relaxation may not be generally achievable, or sufficiently low temperatures may pose

a challenge. Alternatively, one can prepare a manybody entangled state using adiabaticity

[29, 30], where a system is initialized in a trivial ground state and the Hamiltonian is slowly

tuned to adiabatically produce the manybody ground state. Here, high fidelity requires slow

evolution and an absence of excess dissipation that induce quantum jumps between states.

The limitations of these two approaches motivate the investigation of driven dissipative

methods in preparing and stabilizing a manybody system in a non-trivial state. Here, by

designing the dissipative terms in the system Lindbladian [9], the desired manybody state
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can be reached and stabilized as the fixed point of the resulting dynamics [31].

First proposed by Affleck, Kennedy, Lieb and Tasaki (AKLT) in 1987, the AKLT state

(Fig. 3.1(a)) is a prototypical example of the Haldane phase [32] with a symmetry-protected

topological order. It works as a resource state for measurement-based quantum computation

[33, 34], and can be efficiently represented by matrix-product states (MPS) [35]. Since the

MPS representation efficiently describes a large variety of low-energy states of manybody

Hamiltonians, protocols that can produce the AKLT state may be generalized for a range of

applications. Compared with the typical preparation method of the AKLT state based on its

matrix product representation via postselection [36, 37], or based on sequential unitary gates

[38] and assisted with measurements [39], driven-dissipative methods create the manybody

state with robustness and self-correcting features. Here, the system coherence can last much

longer than the lifetime of a single component. Prior proposals have addressed possible

implementation in ion trap and cold atom systems [40, 41]. In this chapter we propose such

preparation and stabilization of the AKLT state in a superconducting transmon platform.

In the experimental platform of superconducting qubits embedded in cQED setups,

driven-dissipative methods have been realized in the stabilization of single body states

[42, 43, 44, 45, 46, 47, 48, 49], two-body states [50, 51, 52], and manybody entangled states

[53]. In this article, we propose a scheme to dissipatively stabilize the 1-dimensional AKLT

state consisting of spin-1 particles on such a platform. As is presented in Fig. 3.1, a spin-1

chain can be realized with an array of superconducting transmon circuits [3], where each

spin-1 particle is identified with lowest three energy levels as a qutrit [54]. Here the dissipa-

tive element is provided by automomous feedback [50] from reservoir engineering. With two

qutrits both coupled to a microwave resonator, local drives combined with cavity dissipation

pump the qutrit pair into the subspace where their total spin Stotal ∈ {1, 0}. In stabiliza-

tion of the ground state of a frustration-free Hamiltonian, the manybody entangled state is

achieved by applying such two-body dissipation terms simultaneously on each nearest neigh-

bour pair as the system size scales up [55]. We thus demonstrate the viability of preparing
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Fig. 3.1: Schemetic diagram of the AKLT state and the local dissipations ap-
plied. (a) The AKLT state represented in for of a spin-1/2 chain, the blue lines
represent spin singlet pairs, and the dashed circles represent projections into spin
triplet states. (b) The AKLT state represented in form of a spin-1 chain, where
neighboring pairs of spin-1 particles are excluded from the Stotal = 2 manifold.
Here each spin-1 particle corresponds to two spin-1/2s as in the representation in
(a), with the pair undergoing projection into the triplet subspace.

and stabilizing a weakly entangled manybody state, the AKLT state, within devices of su-

perconducting transmon qutrits, linear microwave resonators, and specific microwave drives.

This work is structured as follows. In Section 3.2, we review the specific features of

the AKLT state and describe the basic idea of stabilizing the AKLT state via quasi-local

dissipations applied at the same time. In Section 3.3, we then try to generalize several one-

qubit or two-qubit stabilization protocols to realize the desired quasi-local dissipations. With

one successful generalization, we checked the protocol performance as the system scales up

in Section 3.4, in terms of state preparation time and steady-state fidelity. Section 3.5 listed

a possible chip design towards experimental realization.

3.2 The AKLT state

The AKLT Hamiltonian can be obtained with one quadratic term added to the quantum

Heisenberg model

ĤAKLT =
∑

i

[S⃗i · S⃗i+1 + 1
3(S⃗i · S⃗i+1)2]. (3.1)
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Here S⃗i is the angular momentum vector operator for the spin-1 particle on the ith site.

This model was first proposed by Affleck, Kennedy, Lieb and Tasaki (AKLT) in 1987 as

an exactly solvable model with one unique ground state under periodic boundary condition

[32]. It was significant for confirming the Haldane conjecture, by exemplifying a gapped

excitation spectrum on an interger spin chain [56, 57, 58]. Such a ground state with finite

energy differences to the excited states in the thermodynamic limit defines the Haldane phase,

and thus a symmetry-protected topological (SPT) order for odd-integer spin particles, as in

the 1-D AKLT chain [59, 60]. Hence, the AKLT state, being in the SPT phase, is short-

range entangled, while its smooth transformation into a product state is prohibited without

breaking, e.g. the Z2 × Z2 symmetry [58]. Also, the computation capability of the AKLT

chain as a quantum wire in measurement based quantum computation is shared by all states

in the Z2 ×Z2 symmetry-protected topological phase [61]. The SPT order in the AKLT state

can be detected by the string order parameter [62] or characterized by the entanglement

spectrum [63].

The nontrivialness of the SPT order can be revealed by the edge states of the AKLT

chain. Under open boundary condition, the unique ground state of ĤAKLT becomes 4-fold

degenerate, with two fractionalized degrees of freedom emerging on each of the two bound-

aries. Those edge modes are protected by symmetry, which means that their degeneracy can

resist local perturbations that do not break, e.g. the Z2 × Z2 symmetry [64]. For a better

understanding of the edge states, one can visualize the AKLT state on a spin-1/2 chain,

which is shown in Fig. 3.1 (a). In this case, the AKLT state can be obtained by preparing

adjacent spin singlet pairs and then projecting each two edges into the spin triplet subspace.

This is the approach that is followed in optical systems for the preparation of the AKLT

state for measurement based quantum computation [36]. Such a representation views the

edge modes as unpaired spin-1/2 particles.

To represent the AKLT state in a more relevant way to the driven-dissipative protocol,
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its parent Hamiltonian can also be written in the form of quasi-local projectors,

ĤAKLT =
∑

i

P̂ S=2
i,i+1. (3.2)

Here P̂ S=2
i,i+1 projects a pair of neighbouring spin-1 particles (the ith and the (i+1)th) onto the

subspace where their total spin equals 2, thereby adding an energetic cost to the Stotal = 2

subspace. Since the AKLT Hamiltonian is frustration-free [58], its ground state can be

reached by driving each bond into the Stotal ∈ {0, 1} subspace. The AKLT state can then

be obtained whenever the projection onto Stotal = 2 is eliminated for each adjacent pair of

sites, which is shown in Figure 3.1 (b).

3.3 Towards manybody state stabilization

For the aim of stabilizing a manybody entangled state by engineering two-body local inter-

actions, we attempt to generalize existing two-body entanglement stabilization method or

single qubit stabilization method into two-qutrit subspace. For already realized experiments

of stabilizing a two-qubit Bell state, we consider two methods that may have enough de-

gree of freedom, the parametric coupling method [52] and the autonomous feedback method

[50]. We also consider generalizing the single qubit stabilization protocol utilizing Raman

scattering [42]. In this section, the two-qubit protocols are reviewed, and the two-qutrit

generalizations are explored, which is shown in Fig. 3.2. As is reviewed above, the AKLT

Hamiltonian is frustration-free with a unique ground state on periodic boundary conditions

and a four-fold degenerate ground state subspace with open boundary conditions. Thus, the

AKLT state can be reached by the strategy of driving each two adjacent spin-1 particles out

of the Stotal = 2 subspace, as is manifested by the projector form of ĤAKLT in Eqn. 3.2. That

is the stabilization of target subspace for the two-qutrit generalizations to realize.
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Fig. 3.2: Schemetic diagram of the two-qutrit minimal unit of the system de-
signed by the three dissipation mechanisms. (a) The two-qutrit general-
ization of the trade-off free stabilization protocol, here each qutrit is coupled to
the far-dentuned linear cavity via a flux-tuned coupler, which is modulated by
AC and DC drives. (b) The two-qutrit generalization of the Raman scattering
protocol, here the cavity shifted, first-two-level transitions of two qutrits are in
resonance, while the anharmonicities have enough detuning. The two qutrits are
capacitively coupled to each other and dispersively coupled to a common linear
cavity. (c) The two-qutrit generalization of the autonomous feedback protocol,
here the two cavities are both dispersively coupled to a common linear cavity,
without any direct couplings between them.

3.3.1 The trade-off free stabilization protocol

3.3.1.1 Two qubit protocol

The parametric stabilization of two-qubit Bell state via driven dissipative method was pro-

posed theoretically by Doucet et. al. [65] and carried out experimentally by Brown et. al.

[52]. With the design of flux-tunable coupling strength mediated by a SQUID, for periodi-

cally varied flux one have periodically modulated coupling strength between the cavity and

the qutrit or qubit. Driving at the two red sideband frequencies, and applying in-phase Rabi

rotations on both the qubit and qutrit, the effective system Hamiltonian can be written as

[52]

Heff = â†ĉp + âĉ†
p + ΩA(|g⟩A⟨e|A + |e⟩A⟨g|A) + ΩB(|g⟩B⟨e|B + |e⟩B⟨g|B), (3.3)

when going to the rotating frame of both the qubit, the qutrit and the cavity, dropping the

counter-rotating terms. Here â† and â are the creation and annilation operator of the cavity
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photon, |g⟩, |e⟩ and |f⟩ are the energy levels of qutrit A and qubit B, and Ω are the Rabi

frequency of the first two levels of qutrit A and qubit B. The collapse operator is given by

ĉp = cef
A |e⟩A⟨f |A + cge

A |g⟩A⟨e|A + cge
B |g⟩B⟨e|B. (3.4)

Here cef
A , cge

A and cge
B are complex numbers with controllable amplitudes and phases. When

parameters are tuned to cge
A = cge

B , ĉp has its dark states |gg⟩ and (|ge⟩ − |eg⟩)/
√

2, where

ĉp|gg⟩ = ĉp(|ge⟩ − |eg⟩)/
√

2 = 0. Other than the subspace spanned by the dark spaces, the

dissipation processes drive the system towards the Bell state via a higher level |f⟩ in qutrit

A, as is shown in Figure 3.3 (a). In this case, the system may still get trapped in dark state

|gg⟩, which could be resolved by applying the in-phase Rabi drive on both the qutrit and

the qubit. With ΩA = ΩB, the effective unitary rotation operators are given by

R̂eff = σ̂A
x ⊗ IB + IA ⊗ σ̂B

x , (3.5)

Here σ̂s are the Pauli matrices for the first two level of qutrit A and qubit B. Such drive

connects between the represented spin triplet states, but with the spin singlet state as the

dark state. In this process, the protocol stabilizes the system towards the Bell state regardless

of the initial conditions.

3.3.1.2 Two qutrit generalization

The above two-qubit protocol is represented by the first two levels of a qutrit and a qubit.

Here we try to extend the two-qubit protocol to a two-qutrit protocol represented by the first

three levels of a qudit and a qutrit. The designed two-qutrit layout is shown in Fig. 3.2 (a),

where two qutrits are coupled indirectly to a common linear cavity by two tunable couplers

with flux tuning. Instead of the Bell state in the two-qubit case, the two-qutrit protocol has

a four-dimensional target subspace of Stotal ∈ {0, 1}. As is shown in Figure 3.3 (b), we expect

that ĉp has its dark states including all four states in the Stotal ∈ {0, 1} subspace. Other
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Fig. 3.3: Scheme of the trade-off free stabilization protocol. (a) Hilbert space
engineering for the Bell state stabilization scheme [52]. The red rectangle encircles
the subspace affected by the engineered collapse operator, and the green rectangle
encircles the Bell state to stabilize the system into. The blue arrows are in-
phase single qubit drives that connnect the unwanted dark state of the collapse
operator, thus preventing the system from being trapped in that state. The red
zigzagged arrows show the dissipative processes realized by parametric coupling
between the qubits and the cavity. (b) Assumed Hilbert space engineering for the
stabilization of two adjacent qutrits into the Stotal ∈ {0, 1} subspace. The red
rectangle encircles the subspace affected by the engineered collapse operator, and
the green rectangle encircles the target subspace to stabilize of Stotal ∈ {0, 1}. The
blue arrows are qutrit drives that connects the unwanted subspace with the states
in red rectangle and the red zigzagged arrows show the dissipative processes. For
a successful stabilization of the target subspace, the states in the green rectangle
should all reside in the dark space of the collapse operator, with no crossover
between the red and green rectangle.
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than the subspace spanned by the dark spaces, the dissipation processes drive the system

towards the target subspace via the fourth energy level |d⟩ in qutrit A. Also, in-phase Rabi

rotations between both |g⟩, |e⟩ and |e⟩, |f⟩ are applied to prevent the system from trapped

in unwanted subspace. With the control ability to parameters, we assume that the effective

Hamiltonian could be

Heff = â†ĉp + âĉ†
p + ΩA(|g⟩A⟨e|A + |e⟩A⟨f |A + h.c.) + ΩB(|g⟩B⟨e|B + |e⟩B⟨f |B + h.c.), (3.6)

With the collapse operator given by,

ĉp = cfd
A |f⟩A⟨d|A + cge

A |g⟩A⟨e|A + cef
A |e⟩A⟨f |A + cge+

A |e⟩A⟨g|A + cef+
A |f⟩A⟨e|A

+ cge
B |g⟩B⟨e|B + cef

B |e⟩B⟨f |B + cge+
B |e⟩B⟨g|B + cef+

B |f⟩B⟨e|B.
(3.7)

Here |d⟩A is the fourth energy level of qudit A. We can see that, with the effective unitary

rotation operators given by

R̂eff = σ̂A
x ⊗ IB + IA ⊗ σ̂B

x . (3.8)

Since the rotation operator commutes with the total spin, the Stotal = 2 subspace is connected

while there is no component to rotate between Stotal = 2 subspace and Stotal ∈ {0, 1}

subspace. Hence, as long as we can design the parameters to reside the four-fold target

subspace in the dark space of ĉp, the system can be stabilized in the target space regardless

of its initial state. This requires that ĉp|Stotal ∈ {0, 1}⟩ = 0. Here ĉp|Stotal = 1, Stotal
z = 1⟩ = 0

means that ĉp(|ef⟩ − |fe⟩)/
√

2 = 0, which can be solved as

cge
A = cge

B = cgf
A = cgf

B = 0, cef
A = cef

B , c
ef+
A = cef+

B .

Similarly, ĉp|Stotal = 1, Stotal
z = 0⟩ = 0 means that ĉp(|gf⟩ − |fg⟩)/

√
2 = 0, which can be

solved as

cge+
A = cge+

B = cef
A = cef

B = 0, cgf
A = cgf

B , c
gf+
A = cgf+

B .
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Also, ĉp|Stotal = 1, Stotal
z = −1⟩ = 0 means that ĉp(|ge⟩ − |eg⟩)/

√
2 = 0, which can be solved

as

cgf+
A = cgf+

B = cef+
A = cef+

B = 0, cge
A = cge

B , c
ge+
A = cge+

B .

Finally, ĉp|Stotal = 0, Stotal
z = 0⟩ = 0 means that ĉp(|gf⟩ + |fg⟩ − |ee⟩)/

√
3 = 0, which can

be solved as

cge
A = cef

B , c
ge
B = cef

A , c
ge+
A = cef+

B , cge+
B = cef+

A , cgf
A = −cgf

B , c
gf+
A = −cgf+

B .

Here, a non-zero solution that satisfies all the four conditions does not exist. Hence, the

degree of freedom that the two-qutrit protocol provides is not enough for stabilizing the

four-dimensional subspace of Stotal ∈ {0, 1}.

3.3.2 The Raman scattering protocol

3.3.2.1 Single qubit protocol

The single qubit stabilization protocol via Raman scattering was experimentally realized by

Murch et. al. [42]. For a single qubit dispersively coupled to a linear cavity, the system

Hamiltonian can be written as,

Ĥ0 = ωrâ
†â+ ωq

2 σ̂z + χâ†âσ̂z. (3.9)

Here, ωr, ωq are the resonance frequencies of the cavity and the qubit and χ is the dispersive

interaction term which represents the cavity shift. â† and â are the creation and annihilation

operator of the cavity photon and σ̂ are Pauli matrices on the qubit. With Rabi drive on

the qubit at frequency ω′
q and cavity probe at ω′

r, and in the corresponding rotating frame

of the two frequencies, the system Hamiltonian becomes

Ĥ = (ωr − ω′
r)â†â+

ωq − ω′
q

2 σ̂z + χâ†âσ̂z + ΩR

2 σ̂x + εr(â† + â) (3.10)
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Here ΩR is the Rabi drive frequency and εr is the cavity probe amplitude. Displacing

the field operator by the mean field, â = ā + d̂, we get a shift in the Hamiltonian from

the transformation of the cavity dissipation term in the Lindblad master equation, δH =
iκ
2 (ā∗d̂− ād̂†). Then the effective Hamiltonian becomes

Ĥeff = ∆ωrd̂
†d̂+ (∆ωq

2 + χn̄)σ̂z + ΩR

2 σ̂x + χ(ā∗d̂+ ād̂† + d̂†d̂)σ̂z. (3.11)

Here we have ∆ωr = ωr −ω′
r and ∆ωq = ωq −ω′

q. Choosing parameters as ∆ωq

2 +χn̄ = 0, and

representing the qubit in |+⟩ and |−⟩, which are the basis of operator σ̂x, this Hamiltonian

can be written as,

Ĥeff = ∆ωrd̂
†d̂+ Ω

2 (|+⟩⟨+| − |−⟩⟨−|) + χ(ā∗d̂+ ād̂† + d̂†d̂)(|+⟩⟨−| + |−⟩⟨+|). (3.12)

For this instance, with the energy splitting much larger than the strength of the coupling

term, ΩR ≫ χ, we can drop the counter rotating terms and arrive at

Ĥ′
eff = ∆ωrd̂

†d̂+ Ω
2 (|+⟩⟨+| − |−⟩⟨−|) + χ(ā∗d̂|+⟩⟨−| + ād̂†|−⟩⟨+|).

Here, with dissipation term
√
κâ placed on the cavity photons, the two level system dissipates

towards state |−⟩.

3.3.2.2 Two qubit generalization

For two qubits A and B capacitively coupled with each other, and both coupled dispersively

with the cavity, the system Hamiltonian after rorating wave approximation can be written

as,

Ĥ0 = ωrâ
†â+

ωA
q

2 σ̂A
z + χAâ†âσ̂A

z +
ωB

q

2 σ̂B
z + χBâ†âσ̂B

z + J(σ̂A
−σ̂

B
+ + σ̂A

+σ̂
B
−).

Here, ωr, ωA
q and ωB

q are the resonance frequencies of the cavity, qubit A and qubit B. χA

and χB are the dispersive interaction terms which represent the cavity shift for qubit A and
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B. J is the coupling strength between qubit A and qubit B. â† and â are the creation and

annihilation operator of the cavity photon and σ̂ are Pauli matrices on the qubits. When

probing the cavity at ω′
r with amplitude εr, and moving into the rotating frame with ω′

q for

the qubits and ω′
r for the cavity, the system Hamiltonian becomes

Ĥ = ∆ωrâ
†â+

∆ωA
q

2 σ̂A
z +χAâ†âσ̂A

z +
∆ωB

q

2 σ̂B
z +χBâ†âσ̂B

z +J(σ̂A
−σ̂

B
++σ̂A

+σ̂
B
−)+εr(â†+â) (3.13)

Here we write ∆ωr = ωr − ω′
r, ∆ωA

q = ωA
q − ω′

q and ∆ωB
q = ωB

q − ω′
q. Again, displacing

the field operator by the mean field as in the above section, â = ā + d̂, as well as choosing

parameters so that ∆ωA
q

2 + χAn̄ = 0 and ∆ωB
q

2 + χBn̄ = 0 , the effective Hamiltonian becomes

Ĥeff = ∆ωrd̂
†d̂+ J(σ̂A

−σ̂
B
+ + σ̂A

+σ̂
B
−) + (ā∗d̂+ ād̂† + d̂†d̂)(χAσ̂A

z + χBσ̂B
z ). (3.14)

Here we assume state |g⟩ and |e⟩ to the qubits, denoting |+⟩ =
√

2
2 (|ge⟩ + |eg⟩)and |−⟩ =

√
2

2 (|ge⟩ − |eg⟩), then the interaction term can be written as,

σ̂A
−σ̂

B
+ + σ̂A

+σ̂
B
− = |+⟩⟨+| − |−⟩⟨−|

If we choose parameters as χA = −χB = χ0, then we have the cavity shift term written as,

χAσ̂A
z + χBσ̂B

z = χ0(σ̂A
z − σ̂B

z ) = 2χ0(|+⟩⟨−| + |−⟩⟨+|)

With parameters satisfying ∆ωr = J , we can eliminate the fast rotating term in the Hamil-

tonian and arrive at the effective Hamiltonian of

Ĥ′
eff = ∆ωrd̂

†d̂+ J(|+⟩⟨+| − |−⟩⟨−|) + 2χ0(ā∗d̂|+⟩⟨−| + ād̂†|−⟩⟨+|) (3.15)

Here, by the same process as in the single qubit case, when we apply dissipation term
√
κâ

for the cavity photon, the system state can be driven unidirectionally from state |+⟩ to state
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|−⟩. We thus numerically simulate the Lindblad master equation via Qutip [12, 13],

d

dt
ρ(t) = − i

ℏ
[Ĥ, ρ(t)] + κD[â]ρ(t). (3.16)

The Lindblad superoperator for an observable Ô acting on the density matrix ρ is defined as

D[Ô]ρ = ÔρÔ† − 1
2Ô

†Ôρ− 1
2ρÔ

†Ô. (3.17)

Here the parameters are chosen as χ0/2π = 1.5 MHz and J/2π = 15 MHz for the unitary

part Ĥ, n̄ = 1 for the averaged cavity photon population, and κ/2π = 15 MHz for the

dissipation term. As is shown in Fig. 3.5 (a), the system is prepared in the fully mixed state

in the two qubit Hilbert space, and the state population evolves under the protocol. We can

see that for the states |gg⟩ and |ee⟩, the state populations are not affected by the protocol,

but for state |+⟩, which is denoted also by |S = 1, Sz = 0⟩, the state population is evacuated

and stabilized into |S = 0, Sz = 0⟩, which is also |−⟩.

Based on this partial stabilization mechanism, as is shown in Fig. 3.4 (a), the entire

Hilbert space can be stabilized into |−⟩ if drives are applied to rotate between different

states in the Stotal = 1 subspace. With single qubit rotating drives applied in resonance and

detuned by J , the Hamiltonian of the drives are

Ĥ1
rot = Ω1(σ̂A

x + σ̂B
x ), Ĥ2

rot = Ω2 cos (Jt)(σ̂A
x + σ̂B

x ) − Ω2 sin (Jt)(σ̂A
y + σ̂B

y ).

With optimization on the amplitudes of the two drives, we have parameters chosen as

Ω1/2π = 0.825 MHz and Ω2/2π = 0.15 MHz. As is shown in Fig. 3.5 (b), in about 10

times of the timescale in Fig. 3.5 (a), the stabilization of the entire subspace can be realized

with state population fidelity over 95%.
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Fig. 3.4: Scheme of the two-qubit and two-qutrit Raman stabilization protocol.
(a) For existing stabilization mechanism from state |+⟩ to state |−⟩, which is
corresponding to from state |S = 1, Sz = 0⟩ to state |S = 0, Sz = 0⟩, the process
is labeled by the red zigzaged arrow. The blue arrows are the rotating drives
between state +⟩ and other unwanted states |gg⟩ and |ee⟩, which is realized by
resonant and detuned in-phase single qubit drives. And the green dashed rectangle
encircles the target state to stabilize into. (b) For enough detuning between the
anharmonicities of the two qutrits, same stabilization mechanism as in the two-
qubit case from state |+⟩ to state |−⟩ exists. This corresponds to from state
|S = 2, Sz = −1⟩ to state |S = 1, Sz = −1⟩ in the two-qutrit case, which is labeled
by the red zigzaged arrow. The blue arrows are the rotating drives between state
+⟩ and other unwanted states, which is realized by resonant and in-phase single
qutrit drives. And the green dashed rectangle encircles the target four-dimensional
subspace to stabilize into.

58



Chapter 3. State stabilization by dissipation

Fig. 3.5: Simulation results of the two-qubit Raman stabilization protocol. (a)
The two qubits are prepared in fully mixed state in two-qubit Hilbert space.
During the protocol without rotating drives between state |+⟩ and other unwanted
states, only the population of state |+⟩ is eliminated and unidirectionally driven
into state |−⟩. (b) The two qubits are prepared in fully mixed state in two-
qubit Hilbert space. During the protocol with single qubit drives between state
|+⟩ and other unwanted states, all three states except state |−⟩ have their state
populations eliminated, and the state population of state |−⟩ is preserved and
stabilized into.

3.3.2.3 Two qutrit generalization

Fig. 3.2 (b) shows two qutrits A and B capacitively coupled with each other, and both

coupled dispersively with the cavity. Denoting the three qutrit energy levels as |g⟩, |e⟩ and

|f⟩, we have the transition energies from state |g⟩ to state |e⟩ for the two qutrits in resonance,

but with the transition energies from state |e⟩ to state |f⟩ for the two qutrits off-resonant.

This can be realized by having the anharmonicities of the two qutrits different, with e.g.

α1 = −150 MHz and α2 = −300 MHz. Then the system Hamiltonian after rorating wave

approximation can be written as,

Ĥ0 = ℏωrâ
†â+ ℏ

∑
j

ωA
j |j⟩A⟨j|A + ℏ

∑
j

ωB
j |j⟩B⟨j|B

+ ℏ
∑

j

(χA
j |j⟩A⟨j|A + χB

j |j⟩B⟨j|B)â†â+ J(|g⟩A|e⟩B⟨e|A⟨g|B + |e⟩A|g⟩B⟨g|A⟨e|B).
(3.18)
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Fig. 3.6: Simulation results of the two-qutrit Raman stabilization protocol. (a)
The two qutrits are prepared in fully mixed state in two-qutrit Hilbert space.
During the protocol without single qutrit drives rotating between different states
within subspace Stotal = 2, only the population of state |+⟩ (|S = 2, Sz = −1) is
eliminated and unidirectionally driven into state |−⟩ (|S = 1, Sz = −1). (b) The
two qutrits are prepared in fully mixed state in two-qutrit Hilbert space. During
the protocol with single qutrit drives between state |+⟩ and other unwanted states,
all five states with Stotal = 2 have their state populations eliminated, and the
state population of state |−⟩ (|S = 1, Sz = −1) is preserved and stabilized into.
However, the populations of other states in the stabilized subspace, |S = 1, Sz =
0, 1 and |S = 0, Sz = 0, are also reduced slowly over time.
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Here |j⟩ and ℏωj represents the energy levels and corresponding energy eigenvalues of the

energy levels for both qutrit A and B. And ℏχA(B)
j are the interaction energies between the

cavity and qutrit A(B), indicating the cavity resonance frequency’s shift summed over that

induced by qutrit A and qutrit B. J is the coupling strength between the |g⟩ to |e⟩ transitions

of qubit A and qubit B. When probing the cavity at ω′
r with amplitude εr, and moving into

the rotating frame with ω′
j for the qutrits and ω′

r for the cavity, the system Hamiltonian

becomes

Ĥ = ℏ∆ωrâ
†â+ ℏ

∑
j

∆ωA
j |j⟩A⟨j|A + ℏ

∑
j

∆ωB
j |j⟩B⟨j|B + εr(â† + â)

+ ℏ
∑

j

(χA
j |j⟩A⟨j|A + χB

j |j⟩B⟨j|B)â†â+ J(|g⟩A|e⟩B⟨e|A⟨g|B + |e⟩A|g⟩B⟨g|A⟨e|B).
(3.19)

Here we write ∆ωr = ωr −ω′
r, ∆ωA

j = ωA
j −ω′

j and ∆ωB
j = ωB

j −ω′
j. Choosing parameters so

that ∆ωA
j +χA

j n̄ = 0 and ∆ωB
j +χB

j n̄ = 0, as well as ∆ωr = J , we thus numerically simulate

the Lindblad master equation via Qutip [12, 13],

d

dt
ρ(t) = − i

ℏ
[Ĥ, ρ(t)] + κD[â]ρ(t). (3.20)

The Lindblad superoperator for an observable Ô acting on the density matrix ρ is defined as

D[Ô]ρ = ÔρÔ† − 1
2Ô

†Ôρ− 1
2ρÔ

†Ô. (3.21)

The parameters are chosen as χA
ge/2π = −3 MHz, χA

gf/2π = −4.5 MHz, χA
ge/2π = 3 MHz,

χA
ge/2π = 3.5 MHz, and J/2π = 15 MHz for the unitary part Ĥ, n̄ = 1 for the averaged

cavity photon population, and κ/2π = 15 MHz for the dissipation term. As is described in

Section 3.2, the two-qutrit protocol is expected to stabilize the system into the subspace

where Stotal ∈ 0, 1. This is shown in Fig. 3.6 (a), the system is prepared in the fully

mixed state in the two qutrit Hilbert space, and the state population evolves under the

protocol. We can see that for state |+⟩, which is denoted also by |S = 2, Sz = −1⟩, the
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state population is evacuated and stabilized into |S = 1, Sz = −1⟩, which is also |−⟩. For

the 7-dimensional subspace orthogonal to those two states, the state populations are not

affected by the protocol.

Based on this stabilization mechanism for one of the unwanted states, as is shown in

Fig. 3.4 (b), the entire unwanted subspace can be stabilized into |−⟩ if drives are applied to

rotate between different states in the Stotal = 2 subspace. With single qutrit rotating drives

applied in resonance and detuned by J , the Hamiltonian of the drives are

Ĥ1
rot = Ω1(ŜA

x + ŜB
x ), Ĥ2

rot = Ω2 cos (Jt)(ŜA
x + ŜB

x ) − Ω2 sin (Jt)(ŜA
y + ŜB

y ).

With optimization on the amplitudes of the two drives, we have parameters chosen as

Ω1/2π = 1.5 MHz and Ω2/2π = 0.9 MHz. As is shown in Fig. 3.6 (b), in about 10 times

of the timescale in Fig. 3.6 (a), the target subspace population reaches a steady value over

85%. For this protocol, the typical timescale for a reasonable set of experimental parame-

ters is quite long, with trade-offs between the final fidelity and the stabilization time. Also,

mixing and dephasing happens considerably within the stabilized subspace, which does not

necessarily commutes with the AKLT Hamiltonian and thus hinders the two-qutrit protocol

to be generalized into a manybody protocol.

3.3.3 The autonomous feedback protocol

3.3.3.1 Two qubit protocol

In this section, we review the autonomous feedback protocol on two qubits stabilizing the

two qubit Bell state. This protocol was theoretically proposed by Leghtas et. al. [66] and

also experimentally carried out on two superconducting qubits [50]. We consider a linear

cavity simultaneously coupled with both qubit A and B, then the system Hamiltonian can
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be written as [66]

Ĥ = ℏωrâ
†â+ ℏωA

σ̂A
z

2 + ℏωB
σ̂B

z

2 + ℏgA(σ̂A
+â+ σ̂A

−â
†) + ℏgB(σ̂B

+â+ σ̂B
−â

†) (3.22)

in rotating wave approximation. Here ωr, ωA and ωB are the transition frequencies for

the linear cavity, qubit A and qubit B. Parameters gA and gB are the coupling strengths

between qubit A or B and the linear cavity. Operators â† and â are the creation and

annilation operator of the cavity photon, and σ̂ represents Pauli operators on qubit A and

B. With large enough detuning between resonance frequencies of the elements compared to

the coupling strengths, the nearest neighbor couplings are dispersive and the next nearest

neighbour virtual interaction is effectively turned off [67]. In the rotating frame of the two

qubit and the cavity, performing the dispersive limit, the effective Hamiltonian becomes,

Ĥeff = ℏχA
σ̂A

z

2 â†â+ ℏχB
σ̂B

z

2 â†â. (3.23)

Here ℏχA(B) is the interaction energy between the cavity and qubit A(B). This indicates a

shift in the cavity resonance frequency equivalent to the addition of the shifts from qubit

A and B, as is shown in the shifted cavity spectrum in Fig. 3.7(a). This interaction term

also indicates a shift in the qubit spectrum corresponding to different photon numbers in

the cavity, which allows us to perform qubit operations conditioned on the cavity photon

population.

Representing a spin-half particle as a two-level system denoted by |g⟩ and |e⟩, Fig. 3.7(b)

demonstrates Hilbert space engineering in this dissipative stabilization scheme. The cavity

is driven at ωr − (χA +χB)/2 and ωr +(χA +χB)/2, corresponding to the resonance spectrum

peaks for two-qubit states |gg⟩ and |ee⟩. Thus, whenever the qubits are in |gg⟩ or |ee⟩, the

cavity photon population ramps up to an average number of n̄. Otherwise, the cavity photon

number exponentially decays to zero assuming that χ ≫ κ.

When the cavity is populated with 0 photons, the transition energies for qubit A and
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B are ℏωA and ℏωB, while when the cavity is populated with n photons, the transition

energies for qubit A and B are shifted as ℏω′
A = ℏωA + ℏχAn and ℏω′

B = ℏωB + ℏχBn.

Hence, we can consider two types of single-qubit Rabi drives on both qubits. The “0-photon

drive” is applied at ωA(B) with Rabi frequency Ω0 while the “n-photon drive” is applied at

ωA(B) +χA(B)n with Rabi frequency Ωn, given that n ≈ n̄. Therefore, the former qubit drive

is on resonance with the cavity unpopulated while the latter requires a component into the

photon number eigenstate of n. The effective Hamiltonian for the qubit drives are given by

Ĥ0
eff ∝ σ̂A

x ⊗ IB + IA ⊗ σ̂B
x ,

Ĥn
eff ∝ σ̂A

x ⊗ IB − IA ⊗ σ̂B
x .

(3.24)

We will now denote the cavity state with average photon number n̄ in the rotating frame

of its own driving frequency can be denoted as |n̄⟩C. When the qubit–cavity system is in

|gg⟩|0⟩C or |ee⟩|0⟩C, the cavity starts to populate with photons and is driven to a coherent

state |gg⟩|n̄⟩C or |ee⟩|n̄⟩C. At this moment, the “n-photon drive” come into resonance,

rotating state |gg⟩|n̄⟩C and |ee⟩|n̄⟩C into state |ϕ−⟩|n̄⟩C. Once leaving the two-qubit subspace

spanned by states |gg⟩ and |ee⟩, with the system state in |ϕ−⟩|n̄⟩C, the cavity probes are

no longer in resonance. Subsequently, the cavity photon population decays into |ϕ−⟩|0⟩C,

setting the “n-photon drive” off-resonant again. When Ωn has the same scale as the cavity

linewidth κ, the “n-photon drive” combined with cavity probes drives the two-qubit state

unidirectionally from state |gg⟩|0⟩C and |ee⟩|0⟩C to the target Bell state |ϕ−⟩|0⟩C. As is

shown in the inset of Fig. 3.7(b), the effect of such an autonomous feedback process is

similar to that of quantum jump operators |ϕ−⟩⟨gg| and |ϕ−⟩⟨ee|, which occur at a rate

proportional to κ. Aside from the above feedback loop, the “0-photon drive” is applied

to induce rotations between state |ϕ+⟩|0⟩C and state |gg⟩|0⟩C or |ee⟩|0⟩C. Choosing Ω0 to

be comparable with κ, any state in the Hilbert space is driven into the target Bell state

{|ϕ+⟩, |gg⟩, |ee⟩} → |ϕ−⟩. To summarize, the qubit protocol involves a “pump” that drives
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unwanted states {|ϕ+⟩, |gg⟩, |ee⟩}|0⟩C to {|gg⟩, |ee⟩}|n̄⟩C. This then activates a “reset” which

drives the qubits to |ϕ−⟩, and the cavity decays to |0⟩C.

3.3.3.2 Two qutrit generalization

In this section we generalize the above two-qubit protocol utilizing autonomous feedback of

the reservoir to two-qutrit case, where we stabilize each nearest neighbour pair of a spin-1

chain [68]. As is stated in Section 3.2, the AKLT state can be reached by the strategy of

driving each two adjacent spin-1 particles out of the Stotal = 2 subspace. Hence, in this

generalization towards two-qutrit system, we stabilize the system into two-qutrit subspace

representing Stotal ∈ {0, 1} instead of the two-qubit Bell state.

Consider two qutrits coupled to a common linear cavity in the strong dispersive regime,

which is shown in Fig. 3.2 (c). Without applied drives, the system Hamiltonian after rotating

wave approximation becomes

Ĥ = ℏωrâ
†â+ ℏ

∑
j

ωA
j |j⟩A⟨j|A + ℏ

∑
j

ωB
j |j⟩B⟨j|B+

ℏ
∑

j

gA
j (|j⟩A⟨j + 1|Aâ† + |j + 1⟩A⟨j|Aâ) + ℏ

∑
j

gB
j (|j⟩B⟨j + 1|Bâ† + |j + 1⟩B⟨j|Bâ)

(3.25)

Here |j⟩ and ℏωj represents the energy levels and corresponding energy eigenvalues of the

energy levels for both qutrit A and B. Parameter gj represents the coupling strength be-

tween certain energy level and the cavity mode. With large enough detuning of resonance

frequencies between the energy levels compared to the coupling strengths, we again negletct

the next nearest neighbour virtual interaction, and consider the nearest neighbor couplings

as dispersive. In the rotating frame of the two qutrit and the cavity, going to the dispersive

limit, the effective Hamiltonian becomes,

Ĥeff = ℏ
∑

j

(χA
j |j⟩A⟨j|A + χB

j |j⟩B⟨j|B)â†â. (3.26)
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Fig. 3.7: Scheme of the autonomous feedback protocol. (a) The cavity spectrum
shifted by different two-qubit states, with two cavity probes applied at the fre-
quencies marked by the orange arrows. (b) Hilbert space engineering for the Bell
state stabilization scheme [50]. The orange arrows mark the states measured by
the two cavity probes shown in (a), and the blue arrows represent the “0-photon
drive”. The green rectangle encircles the stabilized state, and the zigzag red arrows
are dissipative processes steering into the stabilized state, the mechanism of which
is shown in the inset circled by the red rectangle. Inset: Realization of the jump
operator from state |gg⟩ and state |ee⟩ to the stabilized state. The red arrows are
populating and decaying of the cavity photons, and the yellow arrows denote the
“n-photon drive”. (c) The cavity spectrum shifted by different two-qutrit states,
with two cavity probes applied at the frequencies marked by the orange arrows.
(d) Hilbert space engineering for the stabilization of two adjacent qutrits into the
Stotal ∈ {0, 1} subspace. The orange arrows mark the states measured by the two
cavity probes shown in (c), and the blue arrows represent the “0-photon drive”.
The green rectangle encircles the stabilized subspace of Stotal ∈ {0, 1}, and the
zigzag red arrows are dissipative processes steering into the stabilized subspace,
with similar mechanism as shown in the inset of (b).
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Here ℏχA(B)
j are the interaction energies between the cavity and qutrit A(B), indicating the

cavity resonance frequency’s shift summed over that induced by qutrit A and qutrit B, which

is depicted in Fig. 3.7 (c). This term also indicates

Inspired by the qubit protocol, the cavity is driven at its resonance frequencies for qutrit

states |gg⟩ and |ff⟩, which acts as part of the “pump”. With cavity photon number n, the

qutrit energy levels are shifted to ℏωA(B)
j + nℏχA(B)

j . Here, the three anharmonic energy

levels are denoted as |g⟩, |e⟩ and |f⟩, with ω
A(B)
ef = ω

A(B)
f − ωA(B)

e , ωA(B)
ge = ωA(B)

e − ωA(B)
g ,

χ
A(B)
ef = χ

A(B)
f −χA(B)

e , χA(B)
ge = χA(B)

e −χA(B)
g , and χA(B)

gf = χ
A(B)
f −χA(B)

g . Thus, we apply the

“0 photon drive” at ωA(B)
ge and ωA(B)

ef simultaneously with the same Rabi frequency Ω0, while

the “n photon drive” is applied at ωA(B)
ge + nχA(B)

ge and ω
A(B)
ef + nχ

A(B)
ef with Rabi frequency

Ωn. The effective drive Hamiltonians are

Ĥ0
eff ∝ ŜA

x ⊗ IB + IA ⊗ ŜB
x ,

Ĥn
eff ∝ R̂A

gf ⊗ IB − IA ⊗ R̂B
gf ,

(3.27)

where ŜA(B)
x are the spin angular momentum operators of the spin-1 particles represented

by qutrit A(B), and R̂
A(B)
gf are the rotation operator between the |g⟩ state and the |f⟩ state

induced by direct two-photon transition on qutrit A(B).

The effective rotation operator R̂0
eff coincides with the total spin angular momentum Ŝtotal

x .

Thus, this drive preserves the total spin represented by the two-qutrit system, while it rotates

between different eigenstates of the z component for the total spin Ŝtotal
z . Meanwhile, the

“n-photon drive” does not preserve the total spin and has non-zero components linking states

|gg⟩|n̄⟩C and |ff⟩|n̄⟩C to the |Stotal = 0⟩|n̄⟩C and |Stotal = 1⟩|n̄⟩C subspace. Similar to the

process described in Section 3.3.3.1, with those two drives combined, the two-qutrit system

undergoes unidirectional evolution into the target subspace. The autonomous feedback loop

here provides quantum jump operators from |gg⟩ and |ff⟩ to Stotal ∈ {0, 1} subspace, with

an overall rate proportional to the cavity linewidth κ. This stabilization process on two

qutrits are depicted in Figure 3.7 (d).
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Noticing that states |gg⟩ and |ff⟩ represent two spin-1 particles’ states |Stotal = 2, Stotal
z =

2⟩ and |Stotal = 2, Stotal
z = −2⟩, the drive Ŝtotal

x thus connects the entire subspace Stotal = 2

with |gg⟩ and |ff⟩. This “0-photon drive”, when applied continuously, therefore assists to

evacuate the Stotal = 2 subspace, leading to their stabilization into the target subspace where

Stotal ∈ {0, 1}. Meanwhile, the drive Ŝtotal
x has no cross term between the Stotal = 2 subspace

and the target subspace, preventing leakage back from the stabilized states. Consequently,

the applied drives and dissipations ensure the AKLT state as the fixed point when the

protocol is applied on a qutrit chain.

For the above two-qutrit protocol, we simulate the Lindblad master equation in Qutip

[12, 13] master euqaton solver,

d

dt
ρ(t) = − i

ℏ
[Ĥ(t), ρ(t)] + κD[â]ρ(t) +

∑
l=ge,ef
j=A,B

 1
T j,l

1
D[σj,l

− ]ρ(t) + 1
2T j,l

ϕ

D[σj,l
z ]ρ(t)

 . (3.28)

Here, TA(B),ge
1 and TA(B),ef

1 are the realaxation time from state |e⟩ to state |g⟩ and from state

|f⟩ to state |e⟩. The pure dephasing rate is given by,

1/TA(B),ge(ef)
ϕ = 1/TA(B),ge(ef)

2 − 1/2TA(B),ge(ef)
1 ,

where TA(B),ge(ef)
2 are the dephasing times between the corresponding two adjacent levels.

The Lindblad superoperator for an observable Ô acting on the density matrix ρ is defined as

D[Ô]ρ = ÔρÔ† − 1
2Ô

†Ôρ− 1
2ρÔ

†Ô. (3.29)

For the unitary part of system evolution, we have the Hamiltonian,

Ĥ = Ĥsystem + Ĥprobe + Ĥ0 + Ĥn. (3.30)

Since we work in the rotating frame for the qutrit transition energies as well as for the center
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of the cavity resonance frequencies of corresponding to |gg⟩ and |ff⟩, this Hamiltonian

consists of

Ĥsystem = ℏ
(
χA

gf

2 σA,gf
z +

χA
ge − χA

ef

2 |e⟩A⟨e|A +
χB

gf

2 σB,gf
z +

χB
ge − χB

ef

2 |e⟩B⟨e|B
)
â†â, (3.31)

Ĥprobe = 2ℏεC cos
(
χA

gf + χB
gf

2 t

)(
â+ â†

)
, (3.32)

Ĥ0 = ℏΩ0
(
σA,ge

x + σA,ef
x + σB,ge

x + σB,ef
x

)
, (3.33)

and,

Ĥn = ℏΩn

(
cos

(
n
χA

gf + χB
gf

2 t

)
(σA,gf

x − σB,gf
x ) − sin

(
n
χA

gf + χB
gf

2 t

)
(σA,gf

y − σB,gf
y )

)
.

(3.34)

Here εC is the amplitude of the cavity probe with εC = κ
√
n/2. The qutrit operators

are defined similarly to the qubit case, where σge
+ = |e⟩⟨g|, σge

− = |g⟩⟨e|, σgf
+ = |f⟩⟨g|,

σgf
− = |g⟩⟨f |, σef

+ = |f⟩⟨e|, and σef
− = |e⟩⟨f |. Thus we have σge/ef/gf

x = σ
ge/ef/gf
+ + σ

ge/ef/gf
− ,

σge/ef/gf
y = i

(
σ

ge/ef/gf
+ − σ

ge/ef/gf
−

)
, as well as σgf

z = −|g⟩⟨g| + |f⟩⟨f |. The parameters we

used for the cavity-qutrit interaction term and the cavity linewidth are shown in the first

line of Table 3.1. The T1s and T2s are set to optimistically large values of 500 µs, so that

these decay channels contribute negligibly to the dynamics. The Rabi frequencies for the “0

photon drive” and the “n photon drive” are chosen as Ω0 = κ/2 and Ωn = κ for optimization.

As is shown in Fig. 3.8(a), an adjacent pair of qutrits is initialized in a maximally mixed

state of the nine-dimensional Hilbert space. The system then evolves under the driven

dissipative protocol which consists of always-on drives. For the qutrit pair, all five states

representing Stotal = 2 have their state population converging to zero throughout the pro-

tocol, while the four states in subspace Stotal ∈ {0, 1} are preserved and stabilized. The

protocol effectively eliminates the Stotal = 2 subspace while steering the system into the

Stotal ∈ {0, 1} subspace. Figure 3.8(b) shows the total four state population in subspace
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Fig. 3.8: Performance of the autonomous feedback protocol for two qutrits. (a)
Stabilization process for one pair of neighboring qutrits, with the entire subspace
Stotal = 2 eliminated and subspace Stotal ∈ {0, 1} stabilized. The colored lines
are the state populations for eigenstates of both Ŝtotal and Ŝz

total. b) The blue
line represents the change of total population in the targeted subspace where
Stotal ∈ {0, 1}. The black dotted line is an exponential fit.

Stotal ∈ {0, 1}, which is the two-qutrit AKLT subspace. For stabilization time from about

500 ns, the curve can be well fitted with an exponential function y = Ae−bx +C. The fitting

parameter C is extracted as the final fidelity of the target subspace and b as the stabilization

rate, with the convergence time for the protocol calculated as 1/b.

3.4 Protocol performance with system scaling up

3.4.1 Numerical simulations

We thus generalize the two-qutrit protocol described in Section 3.3.3.2 to the system con-

sisting N qutrits. Since the AKLT Hamiltonian is frustration-free, as the system scales up,

the protocol applies two-qutrit dissipative processes to each adjacent pairs of qutrits. As the

protocol is applied to a 1-D qutrit chain containing N qutrits, the Lindblad master equation
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χge/2π χgf/2π χ′
ge/2π χ′

gf/2π κ/2π
Base parameters used in all simulations 40.00 79.20 38.00 76.00 2.00
Ideal “target” parameters 40.00 80.00 40.00 80.00 2.00
Cavity 1 mismatched 10% from target 43.64 87.81 39.67 87.81 1.93
Cavity 2 mismatched 10% from target 36.66 79.83 39.87 79.83 1.99
Cavity 3 mismatched 10% from target 41.52 76.96 42.79 76.96 1.94

Tab. 3.1: The cavity-qutrit interaction parameters and the cavity linewidth for
one cavity in the chain. (Unit: MHz) Line 1: The base parameters we
choose for simulating two-qutrit as well as multi-qutrit protocol performance in
the article, except in Fig. 3.11(b). This set of base cavity parameters already holds
a little bit mismatch within 5% from the ideal “target” parameters. Line 2: The
ideal device parameters as the target of device fabrication processes. This set of
parameters is the reference for generating the mismatching parameter. Line 3-5:
The mismatched cavity parameters for a four-qutrit chain with its three cavities,
the parameter deviations are randomly generated within 10 percent deviation
from the ideal values. Such deviations are enlarged proportionally for generating
the 20%, 30% and 40% mismatching parameters as given in Fig. 3.11b.

becomes

d

dt
ρ(t) = − i

ℏ
[Ĥ(t), ρ(t)] +

N−1∑
j=1

κjD[âj]ρ(t) +
N∑

j=1
l=ge,ef

 1
T j,l

1
D[σj,l

− ]ρ(t) + 1
2T j,l

ϕ

D[σj,l
z ]ρ(t)

 ,
(3.35)

given that D[Ô]ρ = ÔρÔ† − 1
2Ô

†Ôρ − 1
2ρÔ

†Ô, with the Hamiltonian terms where Ĥ =

Ĥsystem + Ĥprobe + Ĥ0 + Ĥn,

Ĥsystem = ℏ
N−1∑
i=1

(
χi

gf

2 σi,gf
z +

χi
ge − χi

ef

2 |e⟩i⟨e|i +
χ′ i

gf

2 σi+1,gf
z +

χ′ i
ge − χ′ i

ef

2 |e⟩i+1⟨e|i+1
)
â†

i âi,

(3.36)

Ĥprobe = 2ℏ
N−1∑
i=1

εi
C cos

(
χi

gf + χ′ i
gf

2 t

)(
âi + â†

i

)
, (3.37)

Ĥ0 = ℏΩ0
N∑

i=1

(
σi,ge

x + σi,ef
x

)
, (3.38)
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and,

Ĥn = ℏ
N−1∑
i=1

Ωn
i (−1)i−1

(
cos

(
n
χi

gf + χ′ i
gf

2 t

)
(σi,gf

x − σi+1,gf
x ) − sin

(
n
χi

gf + χ′ i
gf

2 t

)
(σi,gf

y − σi+1,gf
y )

)
.

(3.39)

Here χi
ge/gf/ef and χ′ i

ge/gf/ef are the cavity shifts on the ith cavity induced by the ith and

the (i+ 1)th qutrit, and âi(â†
i ) is the annihilation(creation) operator for the ith cavity. With

κi being the cavity linewidth of the ith cavity, we apply the probe strength for this cavity

εi
C = κi

√
n/2. The terms σi,ge/ef/gf

x,y,z are the qutrit matrices for the ith qutrit. The “0 photon

drive”, Ω0, is chosen to be ∑N−1
i=1 κi/2(N − 1) and the “n photon drive”, Ωn

i , is chosen to be

κi. The qutrit-cavity parameters and cavity linewidths are assumed to be the same for each

cavity, equivalent to the two-qutrit case, which is shown in the first line of Table 3.1.

For the qutrit number Nsites ≤ 3, we use the Qutip master equation solver to obtain the

time evolution of the expectation value for the AKLT subspace projector. For Nsites = 4,

the Monte Carlo solver is chosen for its better performance in case of large dimensional

Hilbert spaces. In the latter solver, the equivalence to the system evolution under the master

equation is obtained by stochastically calculating the trajectories for quantum jumps. The

parameter settings are shown in the first line of Table 3.1, with general ratio between χge

and κ around 20. Table 3.1 displays the dispersive shifts and cavity linewidths used for

the simulations. To ensure that our results do not hinge on perfect parameter matches, we

performed all simulations with “base parameters" that were near to what might be considered

ideal. The base parameters, and the “target” parameters are given in the first two lines of

the table. The base parameters are used for the simulations displayed Fig. 3.8, Fig. 3.10,

and Fig. 3.12 (a), (c), (d).

For optimization of the simulation process, it is desirable to make a cutoff at the maximal

cavity photon population at the lowest value possible while maintaining accurate results. As

is presented in Fig. 3.9, we thus monitored the cavity photon number population throughout

the same stabilization process shown in Fig. 3.8. With the ground state or the maximally
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Fig. 3.9: Cavity photon population during the stabilization process. (a) The
system is initialized with a fully mixed state and then evolves under the protocol.
(b) The system is initialized in the ground state. Insets show the stabilization
process calculated with a maximal photon number cutoff of n = 3 instead of
n = 9.

mixed state unidirectionally projected into the Stotal ∈ {0, 1} subspace, the cavity photon

number ramps up in about the first 500 ns and then decays monotonically. Whichever

initial state we chose, the cavity photon numbers for n ≥ 4 are quite small throughout the

stabilization process. Actually, the behaviour of cavity photon number n ∈ {0, 1, 2, 3} makes

up 90 percent of the cavity state population, thus enabling representative description of the

overall system behaviour with limited photon numbers. Consequently, we make a reasonable

cutoff of the cavity photon population n ≤ 3, with which the simulation results are shown in

the insets of Fig. 3.9 (a), (b). By comparing the insets of Fig. 3.9 (a), (b) (with n ≤ 3) to the

main panels (with n ≤ 9) we see very similar photon number dynamics further confirming

that a simulation cuttoff of n ≤ 3 produces accurate results.

Extended from the two-qutrit case, we study the evolution of the system with 2, 3 and 4

sites in the AKLT chain. We consider two initial preparations: either an AKLT state or the

product state of single-qutrit undriven ground states, |g⟩. The evolution of the populations

in the AKLT subspace under the protocol is shown in Fig. 3.10 (a). While stabilization of

the AKLT state is observed, the final fidelity decreases and the converging time increases for
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Fig. 3.10: Performance of the autonomous feedback protocol with the qutrit
chain scaling up. (a) Starting from the qutrits ground state |g . . . g⟩ (solid
colored lines) and starting within the AKLT subspace (dashed colored lines), we
simulate the time evolution of the OBC AKLT subspace population under the
driven dissipative protocol with Nsites = 2 (red), Nsites = 3 (blue) and Nsites = 4
(green) for comparison. Inset: The four qutrit time evolution under the stabiliz-
ing protocol in terms of the system population in the AKLT subspace, with the
cavity shift scaling as χ0, χ0/2 and χ0/4. (b) Extracted fitting parameters as
the final fidelity and the convergence time. The blue dots represent the varied
final fidelity with systems of two, three and four qutrits (left axis), and the green
dots represent the convergence time for the protocol (right axis).
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larger chains. Analyzing the simulation results, we now extract the protocol’s performance

as fitted parameters from the exponential function. The stabilization time, as well as final

fidelity, are calculated according to Section 3.3.3.2 and presented in Figure 3.10, evaluating

the effectiveness of the scaled protocol.

3.4.2 Fidelity of the AKLT subspace

3.4.2.1 Finite ratio between cavity shift and cavity linewidth

In the two-qubit autonomous feedback protocol introduced in Section 3.3.3.1, as is shown

in Fig. 3.7 (a), when χ ≫ κ, the density of states corresponding to |ge⟩ and |eg⟩ is highly

suppressed at the applied cavity drive frequencies. However, if χ/κ is finite, as is expected in

any reasonable experimental realization, a difference in dispersive shifts (χA ̸= χB) results in

different amplitudes in the tails of the Lorentzian cavity spectrum lineshapes. This difference

distinguishes the |ge⟩ and |eg⟩ states, corresponding to a measurement of the qubits in

those bases. This residual measurement therefore dephases the |ϕ−⟩ state, mixing the state

populations of the stabilized state |ϕ−⟩ and the eliminated state |ϕ+⟩, and thus reducing the

fidelity of the autonomous feedback scheme. Considering the scaling between the rate of this

residual measurement and the stabilizing rate to the target Bell state, such a reduction in

fidelity can be significant for a large discrepancy between χA and χB. Hence, for optimal

operation, the two-qubit scheme requires χA ≃ χB, as this can be experimentally achieved

with frequency tunable qubits.

However, when it comes to the two-qutrit protocol introduced in Section 3.3.3.2, where

the stabilized subspace is four-dimensional, such discrepancies in the cavity spectrum shifted

by the stabilized states are unavoidable, even with full tunabilities on the device parame-

ters. Thus, as is discussed above, the overlaps between the peaks in Fig. 3.7 (c) can cause

redundant measurements, compromising the fidelity of the target state. Actually, finite χ/κ

becomes one of the main limiting factors for the final fidelity when we consider ideal relax-

ation and dephasing time of single qutrits. For the N qutrit protocol performance shown in

75



Chapter 3. State stabilization by dissipation

Fig. 3.10, the decrease in final fidelity due to the finite value of χ/κ is explored in the inset

of Fig. 3.10(a). Here we plot the AKLT state population starting from the AKLT state or

the ground state with cavity shifts χ given as χ0, χ0/2 and χ0/4. With the cavity linewidth

κ kept unchanged, smaller χ brings much more dephasing out of the AKLT subspace and

hinders more on the final fidelity of the protocol. On the contrary, increasing χ/κ reduces

such effect brought by redundant measurement via smaller overlaps between peaks of the

shifted cavity spectrum. However, reasonable values of χ/κ can not be infinitely large in

experiment realizations. One limitation is set on χ by the dispersive condition. In the dis-

persive limit, the ratio between the coupling strength and the detuning, g/∆ should be small

enough, while we wish to achieve high value of χ = g2/∆. This indicates a requirement for

large value of the coupling strength, which is finitely achievable and may evoke complicated

nonlinear terms. The other limitation is set on κ. Since the cavity linewidth κ decides the

rate of evacuating and ramping of the cavity photon population, the converging time of the

protocol is proportional to κ. Thus, increasing the value of χ/κ by reducing κ will increase

the protocol converging time, giving less fidelity in the presence of local noise.

Hence, here we have more detailed analysis of the redundant measurement caused by finite

χ/κ. In the strong dispersive limit, we have the relation χ ≫ κ for the cavity-qutrit coupling

parameters. The cavity resonance amplitude, T = 1/(1+x2), is of a Lorentzian spectral line

shape, which is presented in Fig. 3.7 (a) as well as in Fig. 3.7 (c). Here x = 2(ω − ωr)/κ

and ωr is the cavity resonance frequency. Thus, as we probe the system at one of the

peaks, there is a high ratio between the resonance amplitudes for probed and unprobed

states. However, with relatively long protocol time, a small resonance amplitude still causes

residual measurements that distinguishes between stabilized two-qutrit states. Those small

extra measurement terms induced by the probe, as introduced in Section 3.3.3.2, have a

visible effect on the final fidelity of the stabilization for the manybody entangled state, as

is shown in the inset of Figure 3.10(a) and Figure 3.12 (a). If we initialize the system in

one of the open boundary AKLT states, and perform the “0 photon drives” as well as the
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Fig. 3.11: Dephasing out of the AKLT subspace due to extra measurements
caused by the cavity probes. a(b) Initialized with a three(four) qutrit AKLT
state, the system dephases under the “0-photon drives” and the cavity probes,
with qutrit induced cavity shift set as χ = χ0/4 (red), χ = χ0/2 (blue), χ = χ0
(green) and χ = 2χ0 (yellow). The AKLT subspace population curves are fitted
with exponential functions. Insets display the extracted dephasing rate of the
system versus the relative cavity shift χ/χ0.

measurement probe, in ideal case there shouldn’t be any leakage out of the AKLT subspace.

However, in the existence of the redundant measurement, especially when the χ value is small,

the AKLT state dephases out of the AKLT subspace with a fixed dephasing rate. Figure 3.11

shows the simulation result with qutrit number Nsite = 3 and Nsite = 4. The decreases in the

AKLT subspace population are fitted with exponential functions y = Ae−bx +C for fixed C.

And the extracted dephasing rates b are plotted in the insets of Figure 3.11, showing that

the decay rate grows significantly as χ is decreased.

There are two possible routes to mitigate this effect within expeirmentally achievable

conditions. One is working in the so-called straddling regime for transmon circuits[3], where

large χ may be achieved with limited value of coupling strength. The other is the “partial

measurement filter” introduced in chapter 4, which changes the shapes of resonance peaks

in the cavity spectrum. On current platforms, we can expect efficient stabilization as long

as the residual measurement induced dephasing is reduced to some negligible level compared

to the intrinsic dephasing and relaxation of the superconducting qutrits.
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3.4.2.2 Parameter mismatch between designing and fabrication

Then, for the case of a four qutrit chain with three cavities described in Section ??, we

use the pseudo-random number generator in Python to generate deviations of 10% to the

standard expected device parameters, as is shown in the third to fifth lines of Table 3.1.

Notice that the deviations for each pair of χi
gf and χ′ i

gf are always assigned with the same

random number. For the case of 20%, 30% and 40% mismatch, we enlarge the parameter

deviations generated for the 10% case proportionally based on the ideal “target” device

parameters.

In Fig. 3.11b we display simulation results where the neighboring qutrits and cavities

have mismatched parameters. With an overall control of the the Josephson inducductance,

we can assume that perfect matching between χi
gf and χ′ i

gf can be achieved for each cavity

i and its two coupled qutrits i and i + 1, via flux tuning on the qutrits. Other parameters,

including the qutrit-cavity interaction term and the cavity linewidth, are mismatched. These

parameters are given in lines 3-5 of Table 3.1. For larger mismatches displayed in Fig. 3.11b,

the deviations are simply scaled accordingly.

3.4.2.3 Limited relaxation and dephasing time of single qutrit

From the results displayed in Fig. 3.10(a) we can extract the final fidelity and stabilization

time for different size chains, which we display in Fig. 3.10(b) and Fig. 3.11(a). We note

that the final fidelity decreases with size of the chain, and the stabilization time increases.

In actual experiments, the qutrits are not perfectly realizable as in the model simulated

above. For example, there is limited control precision over the qutrit-cavity coupling pa-

rameters. In the above simulations, we assume that the cavity frequency shifts induced by

qutrits are approximately equivalent, with discrepancies smaller than 5 percent. This rela-

tion requires equally spaced cavity frequency shifts from qutrit states |g⟩, |e⟩ and |f⟩, as well

as equal cavity-qutrit interaction terms among different qutrits. Such an assumption for the

sake of simplicity, but are difficult to meet in experiments.
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Fig. 3.12: Fidelity in the four-qutrit AKLT subspace estimated under experi-
mental imperfections. (a) The impact of finite χ compared to κ. (b) Running
the protocol with mismatched device parameters. (c,d) Evaluating the protocol
fidelity under the dissipation channel with finite qutrit T1/Tϕ between adjacent
levels.
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In the experimental realization with transmon qubits [50] matching between the cavity

shift of qubit A and B, χA = χB, was achieved by tuning the qubit frequencies, where

χA(B) ∝ g2
A(B)/(ωA(B) − ωr) with g noting the coupling strength. However, for the current

protocol involving qutrits, matching all the dispersive shifts by simple frequency tuning of the

qutrit levels is not possible. A remnant mismatch between dispersive shifts leads to extra

dephasing induced by residual measurements, which can nevertheless be eliminated by a

higher ratio of χ/κ, as is described in Appendix A. Figure 3.11 (b) shows the protocol fidelity

on a four-qutrit chain with mismatched qutrit-cavity coupling parameters to varied degrees,

for which the choice of device parameters are introduced in Appendix B. The final fidelity

of the protocol decreases slowly from ∼ 85% to ∼ 70% with larger parameter mismatches

from 10% to 40%, indicating a relatively small impact on the protocol performance.

The other aspect of imperfect qutrits considers their intrinsic relaxation and dephasing.

In previous numerical simulations, we set the qutrit T1 and T2 at an optimistically high

level (T1 = T2 = 500 µs) for isolating the protocol performance from the effects brought up

by extra environmental coupling. However, in realistic setups, the relaxation towards the

ground state of each single qutrit, as well as the decoherence between qutrit levels, will drive

the manybody system out of the AKLT subspace, impairing the effectiveness of the protocol.

Nevertheless, we find that the driven dissipative protocol is still able to stabilize the system

coherence far beyond the single qutrit coherence time, showing its robustness. As is shown

in Fig. 3.11 (c/d), the final fidelity in the AKLT susbpace is extracted for finite values of

T1 and Tϕ between adjacent qutrit levels. With T1 or Tϕ solely set to a finite value from

10 µs to 40 µs, the protocol final fidelity increase from ∼ 40% to ∼ 70%. Compared to the

34 = 81 dimensions of the four-qutrit Hilbert space, this result further confirms the ability

of a driven-dissipative method to keep manybody coherent states far beyond their relaxation

or dephasing time.
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3.5 Designed experimental setups

We finalize our chip design as an extended scheme of Fig. 3.2 (c), as is shown in Fig. 3.13

(a). We propose an experimental design that can be realized with state of the art fabrication

capabilities, as a proof of principle of our scheme, which is shown in Fig. 3.13 (b). Each qutrit

is attached to a flux line and a control line, where the qutrit frequencies can be tuned and

the qutrit rotations can be applied. For the microwave cavity coupled to each adjacent pair

of qutrits, there is a drive line to apply probes to the shared cavity. The shared cavities can

also be utilized for state readout to perform quantum state tomography for the verification

of the AKLT state stabilization.
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Fig. 3.13: Designed experimental layout (a) Sketch of the proposed one-dimensional
superconducting transmon array, with shared resonators between nearest neigh-
bors. Using this platform we present a protocol for the dissipative preparation
and stabilization of the system in the AKLT subspace. (b) A chip design by
Qiskit metal, with a flux line and a control line for each tunable transmon qutrit,
and a readout lline for each linear cavity.

82



Chapter 4

Toolbox for dissipative quantum

protocols

4.1 Setbacks of the partial measurement

In both of the above protocols, we have partial measurements, where we distinguish one

system state over the others through dispersive coupling to a linear cavity. However, inherited

from the two qubit measurement, this method may still cause intrinsic imperfections from

unwanted measurements between the states that are not supposed to be distinguished. For

example, in the experiment introduced in Chap. 3, for a qutrit dispersively coupled to a

cavity, the measurement induced dephasing between state |e⟩ and |f⟩ is desirable, while the

dephasing between |g⟩ and |e⟩ is to be avoided. Similarly, in the protocol introduced in Chap.

4, the two-qutrit states |gg⟩ and |ff⟩ are to be measured, while the residual measurements

between other states hinder the scalability of the protocol. Such effects can generally be

eliminated by increasing the ratio between the cavity shift χ and the cavity linewidth κ.

However, increasing χ requires larger coupling coefficient g or lower detuning between the

cavity and the qutrits, which may invalidate the dispersive limit. Also, decreasing κ makes

the readout process slower or results in less efficient autonomous feedback protocols. Thus,

within the theory and simulation of the dispersive limit, we try to design a “filter” for partial

measurement that only allows one state to be distinguished from the others, but filters out
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the unwanted measurement and corresponding dephasing between all other states.

4.2 Classical picture of a bandpass Purcell filter

Fig. 4.1: Diagram of the circuit. (a) A standard resonance cavity (b) Two identical
cavities with capacitive (or inductive couplings), with drive applied to the “reso-
nance cavity” and coupling to the enviroment given in the “filter cavity”. (c) A
standard resonance cavity dispersively coupled to a qutrit for readout. (d) The
resonance cavity and the filter cavity couples to the qutrit dispersively at the same
time. The readout is only obtained at the output port of the filter cavity.

As introduced in Chap. 2 and Chap. 3, the partial measurement over one system state

takes place when the cavity spectrum peak corresponding to that state is probed. As the

condition required for this measurement process, the cavity frequency shift χ induced by

qudit states have to be much larger than the cavity linewidth κ. In this case, the cavity

photon population for the rest of the Hilbert space becomes correspondingly small with the

cavity transmission T ∝ κ2/χ2 and thus indistinguishable in the limit χ/κ −→ ∞. However,

as is discussed in Chap. 3, when the protocol involves long time continuous measurement for

the autonomous feedback, those small residual measurements are theoretically expected to

come into effect, and will have an obvious impact on the final fidelity of the protocol. Thus,

what we want is elimination of the Lorentzian spectrum tails at the measurement probe
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frequency for the states that are not supposed to be measured.

Here we consider, semiclassically, the bandpass Purcell filter design in previous work [69],

which is shown in figure 4.1. With figure 4.1 (a), we know that the cavity evolves as

α̇ = −i∆rdα− iε− κ

2α.

Here ∆rd is the detuning between the drive and the cavity frequency. Then for the the design

in Fig. 4.1 (b), with the resonance cavity and filter cavity inductively coupled, the cavity

evolves as

β = −iG∗

κ/2 + i∆fd

α,

and

α̇ = −i(∆rd + δ)α− iε− κeff

2 α,

κeff = 4|G|2

κ

1
1 + (2∆fd/κ)2 ,

δ = −∆fd

κ
κeff .

Here ∆rd(fd) is the detuning between the drive and the resonance (filter) cavity frequency.

We assume that ωr ∼ ωf . For this resonance cavity, we examine its behaviour when the

drive frequency is far away from both the resonance cavity frequency and the filter cavity

frequency, ∆fd/rd ≫ κ. Since κeff and δω goes to zero with larger ∆rd and ∆fd, the static α =

−iϵr/(i(∆rd + δωr) + κeff/2). It has |α|2 ∝ 1/∆2
rd. So, the filter cavity has |β|2 ∝ 1/∆2

fd∆2
rd.

Since information is only read out through the filter cavity, the dephasing goes into the same

trend, eliminating this Lorentzian tail to the square of its original ratio. Meanwhile, when

the drive is on resonance, such as ∆rd = ∆rf = 0, the cavity’s amplitude is still good for

making readout. This behaviour and its comparison to a standard resonance frequency is

shown in Fig. 4.2.

To point out, when the cavity frequency is shifted away by the qutrit, the filter frequency
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Fig. 4.2: Cavity transmission. The cavity transmission spectrum of the cavity design in
Fig. 4.1. The green line is the normal cavity design in a). The red and blue lines are
the resonance amplitude for the resonance cavity (ωr) and filter cavity (ωf ). We
can observe that, with good correspondence to the semi-classical predictions, ωr

has the same Lorentzian tail as the normal cavity, but in ωf , such tail behaviour
is high suppressed. This is what we want since the readout amplitude is just
proportional to the photon number in the filter cavity.

should also be shifted away. Or else, no elimination will be achieved. For this reason,

in our design we connnect the qutrit to both the resonance and the filter cavities. Let’s

assume the cavity shift from state |g⟩ to state |e⟩ is χ, then as χ ≫ κ, we have the cavity

amplitude ∝ 1/χ4 rather than ∝ 1/χ2. Likely, a normal λ/4 purcell filter eliminate the cavity

transmission at a certain fixed frequency, no matter how the cavity resonance frequency

shifts. That means, if we design the λ/4 purcell filter for a dip in the transmission line

for state other than |gg⟩ and |ff⟩, such a dip will interfere with the cavity resonance peak,

making the measurement probe invalid. Thus, a shift in the working frequency of the Purcell

filter will be also required.
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4.3 Dispersive limit of a cavity-qutrit-cavity system

Here we apply a full quantum analysis of the system consisting two cavities and a qutrit,

within the dispersive limit. Let’s assume ωr and ωf as the resonant frequencies for the reso-

nance resonator and the filter resonator. They are both dispersively coupled to a qutrit with

energy levels ℏωi, separately with strength gr and gf . After rotating wave approximation,

the system Hamiltonian will be,

Ĥ = Ĥ0 + V̂,

Ĥ0 = ℏ
∑

j

ωj|j⟩⟨j| + ℏωrâ
†â+ ℏωf b̂

†b̂,

V̂ = ℏ
∑

i

gr
j,j+1(|j⟩⟨j + 1|â† + |j + 1⟩⟨j|â) + ℏ

∑
i

gf
j,j+1(|j⟩⟨j + 1|b̂† + |j + 1⟩⟨j|b̂).

(4.1)

Assuming that both ωr and ωf are largely detuned from ωi,i+1 = ωi+1 − ωi compared to the

coupling strength gr
j,j+1 and gf

j,j+1, we are able to perform Schrieffer-Wolff transformation

Heff = e−SHeS with

Ŝ =
∑

i

λr
i (|i+ 1⟩⟨i|â− |i⟩⟨i+ 1|â†) +

∑
i

λf
i (|i+ 1⟩⟨i|b̂− |i⟩⟨i+ 1|b̂†). (4.2)

Since we have

[Ŝ, Ĥ0] = ℏ
∑

i

λr
i (−ωi+1 + ωi + ωr)(|i+ 1⟩⟨i|â+ |i⟩⟨i+ 1|â†),

+ℏ
∑

i

λf
i (−ωi+1 + ωi + ωf )(|i+ 1⟩⟨i|b̂+ |i⟩⟨i+ 1|b̂†),

(4.3)

where λr = gr/(ωc − ωr) and λf = gf/(ωc − ωf ), we can see that [S,H0] + V = 0. From the

relation Heff = H0 + V + [S,H0] + [S, V ] + 1
2 [S, [S,H0]] + 1

2 [S, [S, V ]] + ..., we get the final
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Hamiltonian Heff = H0 + 1
2 [S, V ] +O(λ2). From Equation 1.23 and the relations

[|i+ 1⟩⟨i|â, |j + 1⟩⟨j|b̂] = δi,j+1|i+ 1⟩⟨i− 1|âb̂− δi+1,j|i+ 2⟩⟨i|âb̂, and

[|i+ 1⟩⟨i|â, |j⟩⟨j + 1|b̂†] = δi,j|i+ 1⟩⟨i+ 1|âb̂† − δi,j|i⟩⟨i|âb̂†,

(4.4)

we thus have

[Ŝ, V̂ ] = ℏ
∑

i

(λr
i+1gi,i+1 − λr

igi+1,i+2)(|i+ 2⟩⟨i|ââ+ |i⟩⟨i+ 2|â†â†)

+2ℏ
∑

i

χr
i,i+1|i+ 1⟩⟨i+ 1| + 2ℏ

∞∑
i=1

(χr
i−1,i − χr

i,i+1)|i⟩⟨i|â†â− 2ℏχr
0,1|0⟩⟨0|â†â

+ℏ
∑

i

(λf
i+1gi,i+1 − λf

i gi+1,i+2)(|i+ 2⟩⟨i|b̂b̂+ |i⟩⟨i+ 2|b̂†b̂†)

+2ℏ
∑

i

χf
i,i+1|i+ 1⟩⟨i+ 1| + 2ℏ

∞∑
i=1

(χf
i−1,i − χf

i,i+1)|i⟩⟨i|b̂†b̂− 2ℏχf
0,1|0⟩⟨0|b̂†b̂

+ℏ
∑

i

(λr
i+1g

f
i,i+1 − λr

ig
f
i+1,i+2)(|i+ 2⟩⟨i|âb̂+ |i⟩⟨i+ 2|â†b̂†)

+ℏ
∞∑

i=1
(λr

i−1g
f
i−1,i − λr

ig
f
i,i+1)|i⟩⟨i|(âb̂† + â†b̂) − ℏλr

0g
f
0,1|0⟩⟨0|(âb̂† + â†b̂)

+ℏ
∑

i

(λf
i+1g

r
i,i+1 − λf

i g
r
i+1,i+2)(|i+ 2⟩⟨i|âb̂+ |i⟩⟨i+ 2|â†b̂†)

+ℏ
∞∑

i=1
(λf

i−1g
r
i−1,i − λf

i g
r
i,i+1)|i⟩⟨i|(âb̂† + â†b̂) − ℏλf

0g
r
0,1|0⟩⟨0|(âb̂† + â†b̂).

(4.5)

With the two-photon transition terms small and negligible as stated previously [3], we can

write the final effective Hamiltonian as

Heff = ℏ
∑

j

ωj|j⟩⟨j| + ℏωrâ
†â+ ℏωf b̂

†b̂+ ℏ
∑

i

χr
i,i+1|i+ 1⟩⟨i+ 1| + ℏ

∑
i

χf
i,i+1|i+ 1⟩⟨i+ 1|

+ ℏ
∞∑

i=1
(χr

i−1,i − χr
i,i+1)|i⟩⟨i|â†â− ℏχr

0,1|0⟩⟨0|â†â+ ℏ
∞∑

i=1
(χf

i−1,i − χf
i,i+1)|i⟩⟨i|b̂†b̂− ℏχf

0,1|0⟩⟨0|b̂†b̂

+ ℏ
∞∑

i=1
(Gi−1,i −Gi,i+1)|i⟩⟨i|(âb̂† + â†b̂) − ℏG0,1|0⟩⟨0|(âb̂† + â†b̂).

(4.6)
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Here χr(f)
i,i+1 is defined as λr(f)

i g
r(f)
i,i+1 which is gr(f)

i,i+1
2/(ωi,i+1 − ωr(f)), and

Gi,i+1 =
λr

ig
f
i,i+1 + λf

i g
r
i,i+1

2 =
gr

i,i+1g
f
i,i+1

2

(
1

ωi,i+1 − ωr

+ 1
ωi,i+1 − ωf

)
.

4.4 The tunable coupler design

Direct realization of the circuit with equal ωr and ωf faces difficulties from two reasons. First,

possible difficulties may appear in fabricating two fixed linear cavities with equal resonance

frequencies within certain desired accuracy. Second, with approximated frequencies for the

two cavities, the virtual exchange interaction mediated by the common qutrit that they

are dispersively coupled to dominants the coupling between them, making the scale of the

coupling strength uncontrollable. For those two reasons, we come to the design with a

parametrically tunable coupler, which is realized as the design in previous works [52, 43, 70].

Here, ωr and ωf are off-resonant with a relatively large detuning in between compared to the

coupling strength mediated by the qutrit and other parts of the circuit. The resonance cavity

and the filter cavity are coupled with a tunable coupler with coupling strength parametrically

tuned by a frequency ωt, causing an additional coupling strength G(t) = 2Gd cos (ωtt) +Gs.

With rotating wave approximation, G(t)(â+ â†)(b̂+ b̂†) is only preserved as G(t)(âb̂† + â†b̂),

then the system Hamiltonian becomes,

H(t) = ℏ
∑

j

ω̃j|j⟩⟨j| + ℏω̃râ
†â+ ℏω̃f b̂

†b̂+ ℏ
∞∑

i=1
χr

i |i⟩⟨i|â†â+ ℏ
∞∑

i=1
χf

i |i⟩⟨i|b̂†b̂

+ ℏ
∑

i

Gi|i⟩⟨i|(âb̂† + â†b̂) + ℏ(Gde
iωtt +Gde

−iωtt +Gs)(âb̂† + â†b̂).
(4.7)

Here the coefficients are defined as, ω̃0 = ω0, ω̃i = ωi + χr
i,i+1 + χf

i,i+1(i ≥ 1), ω̃r(f) =

ωr(f) − χ
r(f)
0,1 , χr(f)

i = χ
r(f)
i−1,i − χ

r(f)
i,i+1 + χ

r(f)
0,1 , G0 = −G0,1, and Gi = Gi−1,i − Gi,i+1. Going to
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a rotating frame by performing the unitary transformation,

Û(t) = exp

−i(
∑

j

ω̃j|j⟩⟨j| + ω̃râ
†â+ ω̃f b̂

†b̂)t

,
the Hamiltonian becomes,

Ĥ ′ = Û †ĤÛ − iℏÛ †∂tÛ = ℏ
∞∑

i=1
χr

i |i⟩⟨i|â†â+ ℏ
∞∑

i=1
χf

i |i⟩⟨i|b̂†b̂

+ ℏ
∑

i

(Gi +Gs)|i⟩⟨i|(ei(−ωr+ωf )tâb̂† + ei(ωr−ωf )tâ†b̂)

+ ℏ(Gde
iωtt +Gde

−iωtt)(ei(−ωr+ωf )tâb̂† + ei(ωr−ωf )tâ†b̂).

(4.8)

Choosing the right parameter ωt = ωr − ωf , and keeping only the co-rotating terms as was

done in previous works [52, 65], we obtain

Ĥ ′ = ℏ
∞∑

i=1
χr

i |i⟩⟨i|â†â+ ℏ
∞∑

i=1
χf

i |i⟩⟨i|b̂†b̂+ ℏGd(âb̂† + â†b̂), (4.9)

which gives the Hamiltonian that we designed for.

4.5 Numerical simulation results

To verify the system behaviour, we use Qutip to simulate the master equation,

d

dt
ρ(t) = − i

ℏ
[H, ρ(t)] + κD[b̂]ρ(t),

where

D[Ô]ρ = ÔρÔ† − 1
2Ô

†Ôρ− 1
2ρÔ

†Ô.
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Fig. 4.3: Cavity photon population. Upper/middle/lower: The cavity photon popula-
tion when the qutrit is prepared in state |g/e/f⟩ and the cavity is probed at the
cavity resonance frequency of state |g⟩. Red and blue: the photon number of the
resonance cavity and the filter cavity as designed in Fig. 4.1 b and d. Green: the
photon number of the single cavity as designed in Fig. 4.1 a and c
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For the unitary part of the evolution restricted to the first three energy levels for the qutrit,

the Hamiltonian is,

H = Hundriven +Hdrive, Hdrive = ℏϵ(â† + â),

Hundriven = ℏ(χr
1|1⟩⟨1| + χr

2|2⟩⟨2|)â†â+ ℏ(χf
1 |1⟩⟨1| + χf

2 |2⟩⟨2|)b̂†b̂+ ℏGd(âb̂† + â†b̂).
(4.10)

The system was driven through the weakly coupled input port in the resonance cavity, and

dissipates through the strongly coupled output port in the filter cavity. Qutrit relaxation

and dissipation, as well as the photon leakage out of the resonance cavity, are not taken

into consideration at this step. Solving this master equation with the master equation solver

module in Qutip [12, 13], we track the system behaviours and compared them with the

standard readout model. The simulated averaged photon number is in Fig. 4.3. We can

see that compared to both the photon population of the resonance cavity and the design in

Fig. 4.1 (a)’s cavity, the averaged photon number of the filter cavity is largely suppressed

for states |e⟩ and |f⟩, but not for state |g⟩, which is of our desires. This result in similar

dephasing rate of the |g⟩ state, but the off-diagonal term between |e⟩ and |f⟩ is preserved,

just as shown in Fig. 4.4. Taking the setup with one qutrit as an example here, our target

is to measure state |g⟩ with minor disturbance to the coherence between state |e⟩ and |f⟩.

This requires enough dephasing to the term Tr(|g⟩⟨e|ρ) and eliminated dephasing to the

term Tr(|e⟩⟨f |ρ), where ρ is the system density matrix.

We then try the design to be connected to two qutrits in the same way as shown in

Fig. 4.1 d, and run the stabilizing protocol on the designed setup. In Fig. 4.5 a and c, we see

that the protocol still stabilize the system from state |gg⟩ to the Stotal ∈ {0, 1} subspace. But

if we initialize the system in the Stotal ∈ {0, 1} subspace, then run the protocol, we get the

coherence term between those four states preserved much more than usual, with comparison

between Fig. 4.5 c and d.
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Fig. 4.4: Elimination of extra dephasing in a qutrit readout process. (a) With the
design in Fig. 4.1 (d), the system is prepared in

√
3

3 |g⟩+
√

3
3 |e⟩+

√
3

3 |f⟩, and probed
at the cavity resonance frequency of state |g⟩: Upper: The dephasing between
state |g⟩ and state |e⟩ when we have the χ = 5κ. Red and blue: the population of
state |g⟩ and state |e⟩, green: the absolute value of the cross term between state |g⟩
and state |e⟩. Lower: The dephasing between state |e⟩ and state |f⟩ when we have
the χ = 5κ. Red and blue: the population of state |e⟩ and state |f⟩, green: the
absolute value of the cross term between state |e⟩ and state |f⟩. Compared with
(b), we can see that the elimination of the extra measurement induced dephasing
is quite huge. (b) With the design in Fig. 4.1 (c), same contents are shown as in
(a). Although the cavity photon population for |e⟩ is 100 times less than |g⟩, over
the time period of 20 µs the measurement induced dephasing between state |e⟩
and state |f⟩ is still quite concerning.
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Fig. 4.5: Performance of the protocol. (a) The two-qutrit protocol connected to the
cavity design in Fig. 4.1 (b) and d still can stabilize the target subspace. (b) The
dephasing among the four protected states is also protected. (c) The two-qutrit
protocol connected to the cavity design in Fig. 4.1 (a) and (c) stabilize the target
subspace. (d) The dephasing among the four states within the target subspace is
quite high accumulated through the stabilizing time for several µs.
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4.6 Possible applications and limitations

Applications of this design may go beyond the current AKLT protocol, e.g. if we want such

always-on measurements involving several peaks in the cavity spectrum in QEC.

However, in actual experiment involving long-time continuous measurement and some-

times followed by autonomous feedback, when going to several tens of microseconds, the main

limitations will be that the non-demolition feature of the measurement is not strict, which

causes the qutrit energy to decay. If we do a full Hamiltonian simulation of the dispersive

coupled qutrit-cavity system, we can see that energy exchange becomes much more obvious

than the residual measurement between the states that are not supposed to be measured.

Within the validation of the dispersive limit, simulation shows that this method will have

obvious improvements over the normal measurement in eliminating unwanted measurements.

But simulation also shows that this improvement is only significant when χ ≫ κ, where the

residual measurement accumulates into effect in about several tens of microseconds. In such

time scale, the main factor that hinders the measurement will be its imperfect nondemolition

feature caused by higher order nonlinear terms in the dispersive approximation, where the

cavity and the qutrits are having actual energy exchanges. Therefore, applying this method

may not significantly eliminate the imperfect aspects of the measurement pulse utilized in

the protocol introduced in Chap. 5 for actual experiment considerations.
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Discrete time crystalline order with

dissipation

In this chapter, we propose experimental implementation of dissipative discrete time crystal

on superconducting circuit platform. Potential methods to realize the quantum Rabi model

in strong coupling regime are introduced and simulated. Then, such physical realizations are

generalized to protocols involving the proposed experimental observation for novel manybody

phenomena.

5.1 Time crystalline order

Time crystalline order relates to broken time translational symmetry. The attempts in

implementing broken continuous time translational symmetry in thermal equilibrium turned

out not possible. However, broken discrete time translational symmetry are observed in

quite several platforms. Such discrete time crystalline order shows subharmonic oscillations

undergoing periodic driving, and becomes robust against fluctuations in driving parameters.

By now, most observation of the discrete time crystalline order are for isolated manybody

systems, but dissipative systems can also show such order. Here we review related previous

work on this topic and propose an implementation with superconducting transmon qubits.
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5.2 Discrete time crystalline order in a dissipative

system

Dissipative time crystalline order is proposed [71] and experimentally realized [72] in non-

linear optical systems, as well as in the open quantum Dicke model [73]. The latter is

proposed [74] and evaluated [75] theoretically and observed with BEC system of 87Rb atoms

experimentally [76]. The unitary part of system evolution is

H(t) = ωcâ
†â+ ω0Ĵz + 2λ(t)√

N
(â+ â†)Ĵx,

where â† and â are the creation and annihilation operators of the linear cavity, and ωc is

the cavity resonance frequency. Ĵz and Ĵx are the z and x components of the collective spin

consisting of N two-level particles, and λ(t) is the time dependent coupling strength. The

system is subjected to dissipation of the cavity photons,

d

dt
ρ(t) = − i

ℏ
[H, ρ(t)] + κD[â]ρ(t),

with,

D[Ô]ρ = ÔρÔ† − 1
2Ô

†Ôρ− 1
2ρÔ

†Ô.

The dissipative time crystalline order is provided by symmetry breaking when the coupling

strength is above the critical value λc = 1
2

√
ω0
ω

(
ω2 + κ2

4

)
, which gives two steady states

with different symmetries [77]. Provided with the parity operator during one period, the

subharmonic oscillation between the two steady state can happen in half frequency of the

original drive, which reveals a discrete time crystalline order. For example, this behaviour
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emerges if we assign the time-dependent coupling strength as,

λ(t) =


λ 0 ≤ t < T

2

0 T
2 ≤ t < T

, (5.1)

which is simulated in previous theoretical work [74].

This time crystalline behaviour can be observed in the thermodynamic limit, where N

approaches infinity. In deep quantum regime, nevertheless, the system shows a transient

time cystalline behaviour, even with an extremely limited qubit number of N=2. Below we

design several experimental protocols for observing this few-qubit behaviour.

5.3 Realization of the quantum Rabi model in strong

coupling regime

5.3.1 Parametric modulated tunable coupler

The quantum Rabi model describes the system for a transmon qubit and cavity before

rotating wave approximation,

Ĥ = ℏωrââ
† + ℏ

ωq

2 σ̂z + ℏg(â+ â†)σ̂x.

For a static value of the coupling strength g, with ωr + ωq ≫ |ωr − ωq| and ωr, ωq ≫ g,

the counter-rotating term will be dropped since it is fast rotating. As we go to the rotating

frame for both the cavity and the qubit at ω0, the Hamiltonian becomes

Ĥeff = ℏ∆rââ
† + ℏ

∆q

2 σ̂z + ℏg(âσ̂+ + â†σ̂−).

Here ∆r = ωr − ω0, ∆q = ωq − ω0.
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For a parametrically modulated value of the coupling strength as g(t) = g+ cos (ω0
q + ω0

r)+

g− cos (ω0
q − ω0

r), as we go to the rotating frame for the qubit at frequency ω0
q and for the

cavity at frequency ω0
r , the Hamiltonian becomes

Ĥ = ℏ∆rââ
† + ℏ

∆q

2 σ̂z + ℏg(t)(e−iω0
r tâ+ eiω0

r tâ†)(e−iω0
q tσ̂− + eiω0

q tσ̂+)

= ℏ∆rââ
† + ℏ

∆q

2 σ̂z + ℏg+(âσ̂− + e2iω0
q tâσ̂+ + e2iω0

r tâ†σ̂− + e2i(ω0
r+ω0

q )tâ†σ̂+)

+ ℏg+(e−2i(ω0
r+ω0

q )tâσ̂− + e−2iω0
r tâσ̂+ + e−2iω0

q tâ†σ̂− + â†σ̂+)

+ ℏg−(e−2iω0
r tâσ̂− + e2i(ω0

q −ω0
r)tâσ̂+ + â†σ̂− + e2iω0

q tâ†σ̂+)

+ ℏg−(e−2iω0
q tâσ̂− + âσ̂+ + e2i(ω0

r−ω0
q )tâ†σ̂− + e2iω0

r tâ†σ̂+)

(5.2)

In the regime of our interest, ∆r,∆q ∼ g and |ωq −ωr| ≫ g, we can drop the counter rotating

terms and gain the effective Hamiltonian

Ĥ′
eff = ℏ∆rââ

† + ℏ
∆q

2 σ̂z + ℏg+(âσ̂− + â†σ̂+) + ℏg−(â†σ̂− + âσ̂+) (5.3)

When choosing g− = g+ = g, we have the quantum Rabi model. This extended range of

ratio between the mode frequencies and the coupling strengths give us the strong coupling

regime, thus accesses to several possible realizations of certain manybody models.

5.3.2 Parametric modulated tunable qubit

The above realization could be further simplified, where we modulate the frequency of a

tunable qubit and couple the qubit directly to the cavity instead. The model to achieve

parametric coupling by modulated qubit frequency is analysed [78, 79] and realized [80, 81,

82] in previous works. As is shown previously in Section 1.2, with a tunable transmon qubit,

the effective Josephson energy, EJ , is modified via applying different flux bias, Φ. With the

qubit frequency being ωq ∝
√
EJEC , and the coupling strength between the qubit and a

linear cavity being g ∝ 4
√
EJ/EC , we treat the small modulations in EJ as expansions in ωq
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and a fixed value in g for the leading corrections. The system Hamiltonian can be written

as,

H = ℏωrâ
†â+ ℏωq(t)

σ̂z

2 + ℏg(â+ â†)σ̂x. (5.4)

In previous works aiming at achieving parametric couplings between the qubit and the cavity,

the modulation of the qubit frequency is set to

ωq(t) = ω̄q + ϵ−

2 cosω−t, (5.5)

where ω− is chosen to be ωr − ω̄q. In that case, after dropping the counter rotating terms

in the Hamiltonian since g is much smaller than the frequency difference ω−, we have the

effective Hamiltonian H ′ ∝ g(â†σ̂− + âσ̂+) due to the sideband of the modulated qubit

frequency. In this work, instead, we aim at achieving the effective strong coupling between

the qubit and the cavity, so we have

ωq(t) = ω̄q + ϵ−

2 cosω−t+ ϵ+

2 cosω+t. (5.6)

This could be done by applying the flux bias around the sweet spot,

Φ(t) = Φ̄ + Φ̃− cosω−t+ Φ̃+ cosω+t. (5.7)

We go to a rotating frame by performing the unitary transformation,

Û(t) = exp
{

−i(∆qt+ ϵ−

2ω−
sinω−t+ ϵ+

2ω+
sinω+t)

σ̂z

2 − i∆râ
†ât

}
. (5.8)

Here we notice that from the commutation relation, [σ̂−, σ̂z] = 2σ̂−, [σ̂+, σ̂z] = −2σ̂+,we

obtain that σ̂−σ̂
n
z = (σ̂z +2)nσ̂−, σ̂+σ̂

n
z = (σ̂z −2)nσ̂+. Similarly, from [â, â†â] = â, [â†, â†â] =

−â†, we have â(â†â)n = (â†â+ 1)nâ, â†(â†â)n = (â†â− 1)nâ†. We also have the definition of

the Bessel function, obtaining that eiy sin x = ∑
n∈Z Jn(y)einx. Then the effective Hamiltonian

100



Chapter 5. Discrete time crystalline order with dissipation

becomes,

Ĥeff = Û †ĤÛ − iℏÛ †∂tÛ = Û †Û(ℏωrâ
†â+ ℏωq(t)

σ̂z

2 ) + Û †g(â+ â†)σ̂xÛ

− iℏÛ †Û(−i)[(∆q + ϵ−

2 cosω−t+ ϵ+

2 cosω+t)
σ̂z

2 + ∆râ
†â]

= Û †g(â+ â†)(σ̂− + σ̂+)Û + ℏ(ωr − ∆r)â†â+ ℏ(ω̄q − ∆q)
σ̂z

2
= g(e−i∆rtâ+ h.c.)(e−i(∆qt+ ϵ−

2ω−
sin ω−t+ ϵ+

2ω+
sin ω+t)

σ̂− + h.c.) + ℏω′
râ

†â+ ℏω′
q

σ̂z

2

= g(e−i∆rtâ+ h.c.)(e−i∆qt

∑
n∈Z

Jn

(
ϵ−

2ω−

)
e−inω−t

∑
m∈Z

Jm

(
ϵ+

2ω+

)
e−imω+t

 σ̂−

+ h.c.) + ℏω′
râ

†â+ ℏω′
q

σ̂z

2

= g
∑
n∈Z
m∈Z

Jn

(
ϵ−

2ω−

)
Jm

(
ϵ+

2ω+

)
e−i(∆r+∆q)t−inω−t−imω+tâσ̂− + h.c.

+ g
∑
n∈Z
m∈Z

Jn

(
ϵ−

2ω−

)
Jm

(
ϵ+

2ω+

)
e−i(∆r−∆q)t+inω−t+imω+tâσ̂+ + h.c.+ ℏω′

râ
†â+ ℏω′

q

σ̂z

2 .

(5.9)

Here we take the values ω̄q − ∆q = ω′
q, ωr − ∆r = ω′

r. We also choose the modulation

frequencies as ω− = ∆r − ∆q and ω+ = ∆r + ∆q. For the Bessel function with 0 < x < 1,

the absolute value of Jn(x) will drop quickly for n ≥ 2, leaving the lower order values to be

dominating. Excluding the case when nω− + (m ± 1)ω+ → 0 or (n ± 1)ω− + mω+ → 0, we

are able to drop the counter rotating terms and arrive at the final effective Hamiltonian

Ĥeff = gJ0

(
ϵ−

2ω−

)
J−1

(
ϵ+

2ω+

)
âσ̂− + gJ1

(
ϵ−

2ω−

)
J0

(
ϵ+

2ω+

)
âσ̂+

+ gJ0

(
ϵ−

2ω−

)
J−1

(
ϵ+

2ω+

)
â†σ̂+ + gJ1

(
ϵ−

2ω−

)
J0

(
ϵ+

2ω+

)
â†σ̂− + ℏω′

râ
†â+ ℏω′

q

σ̂z

2

= gJ0(α)J1(α)σ̂x(â+ â†) + ℏω′
râ

†â+ ℏω′
q

σ̂z

2 ,

(5.10)

with α = ϵ−/2ω− = −ϵ+/2ω+. The largest value of J0(α)J1(α) is around α = 1.08 with the

value 0.339. With such freedom of parameter choice, we can simulate any ratio between the

coupling strength and the atom energy frequencies by shifting the modulation frequency.
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Conclusion

In this dissertation, we have presented a comprehensive exploration of quantum informa-

tion processing via dissipation engineering in the superconducting circuit platform. Our

investigation has shed light on the potential of dissipation as a novel and powerful tool for

manipulating and processing quantum information.

Throughout this work, we have examined various aspects of dissipation engineering, start-

ing with an introduction to the Josephson junction as a fundamental component in super-

conducting circuits. This foundational knowledge laid the groundwork for our subsequent

discussions on the superconducting Transmon circuit and its interaction with the microwave

cavity.

In Chapter 2, we delved into the intricate concept of the geometric phase and its accu-

mulation under adiabatic evolution. We investigated measurement-induced geometric phase

transitions and devised different protocols for measuring the decoherence-induced geometric

phase. Our comprehensive simulation and experimental results have demonstrated the poten-

tial for achieving precise control and manipulation of quantum states to realize dissipation-

based geometric phase measurements.

Additionally, in Chapter 3, we explored state stabilization by dissipation. The study of

many-body states, specifically the AKLT state, provided valuable insights into the use of

dissipation as a means of stabilizing and engineering complex quantum states. By examining

the performance of various stabilization protocols, we have demonstrated that dissipation

102



Chapter 6. Conclusion

can effectively prepare and stabilize a topologically nontrivial many-body state.

In conclusion, the findings presented in this dissertation demonstrate the integration of

dissipation engineering into the superconducting circuit platform, which offers new possibili-

ties for the realization of robust and fault-tolerant quantum information processing schemes.

By leveraging dissipation, we can achieve better control, measurement, and stabilization of

quantum states, thereby overcoming challenges posed by decoherence. The findings pre-

sented herein provide a solid foundation for future research in this rapidly evolving field.
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