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The presence of the environment in real-world experiments that strive to harness quantum

mechanical effects is inevitable. This results in dissipation, which is known to be the main

source of errors that prevent us from building a practical quantum computer. Nevertheless,

one can employ the environment as a resource, especially when there is a strong coupling

between the system and its environment. In this regime, the dynamics of the system is

governed by the generalized Nakajima-Zwanzig master equation incorporating all the memory

effects induced by the environment. The existence of memory allows us to investigate

intriguing phenomena, such as the revival of an entangled state. This acts as a measure to

probe the characteristics of the environment. In this work, we study the evolution of an

entangled state in this regime via a multi-qubit superconducting processor. In addition to

the dissipation caused by the presence of the environment, the intrinsic material defects, e.g.

the two-level system fluctuators, also contribute to the loss in superconducting circuits. To

circumvent this issue, we explore a method to fabricate niobium superconducting circuits

under high vacuum pressures to suppress the microwave loss caused by materials.
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Chapter 1

Introduction

1.1 From Quantum Circuits to Open Quantum
Systems

1.1.1 History of quantum circuits

Since the first conception of macroscopic quantum effects in circuits in 1980 [1], quantum

circuits have been developed to realize artificial atoms in the laboratory. One example of

such a system is the Josephson tunnel junction (JJ), consisting of two superconducting

layers mediated by a thin insulating layer [2]. The quantum effect occurs below the critical

temperature of the superconductor, where the cooper pairs tunnel through the thin insulator

with a phase difference across the insulating layer [3]. In one of the pioneering experiments,

Martinis et. al. [4] measured the quantized energy levels of a JJ to further develop the idea of

utilizing this circuit as the desired artificial atom for quantum computing purposes. Later on

in a remarkable experiment, Yamamoto et. al. [5] demonstrated a controllable gate operation
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performed on a pair of charge quantum bits (qubit) to realize a controlled-NOT gate in a

superconducting circuit. However, due to the lack of a robust readout scheme and short

coherence times of the circuit, these experiments never produced any groundbreaking results

besides demonstrating the feasibility of such implementations in superconducting circuits.

To circumvent the problematic aspects of the early-stage circuits mentioned above, the

first step was to integrate the cavity quantum electrodynamics (QED) techniques to the

superconducting circuits platform to make the readout more robust and reliable. First

proposals to realize a practical control scheme was to use open three-dimensional cavities

where the qubit can be coupled to the electromagnetic fields of the cavity to reliably control its

state and result in entangled states [6]. In another remarkable article, Schoelkopf’s group [7]

suggested a novel architecture to protect the qubit against the electromagnetic environment

surrounding it to achieve a high-fidelity readout incorporating a one-dimensional transmission

line. Nevertheless, the intrinsic short coherence times of the qubit architectures to date was

a still a major hindering factor in realizing high-fidelity qubit gates. A major leap towards

the improvement of the coherence times of the qubits was taken by Koch et. al. [8] in 2007.

They proposed a new charge insensitive qubit circuit, named “transmon”. The transmon

circuit consists of the widely-used JJ element attached to a large shunted capacitor. Due to

the large capacitor, the charge energy due to the capacitor is much smaller than that of the

energy stored in the junction, hence making it less susceptible to charge noise.

The invention of the transmon circuit was a significant achievement towards advancing the

superconducting quantum computing platform. Moreover, it paved the path for advancing
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circuit QED techniques, allowing the realization of multi-qubit processors. This advancement

in the circuit QED field yielded in remarkable results, ranging from the implementation of

simple quantum computing algorithms [9, 10, 11] and error correction demonstrations [12, 13,

14, 15] to surpassing the classical computing capabilities by employing devices with tens of

qubits [16] and even facilitating the search for the dark matter axions with quantum-limited

amplifiers [17].

1.1.2 The environment and memory

The dissipation caused by the system-environment in the real-world experimental setups is

inevitable. This dissipation is one of the major factors contributing to the decoherence in

superconducting circuits alongside the dissipation caused by the intrinsic material defects

formed during the fabrication of such circuits. Dissipation is also the main feature in

superconducting circuits that allows us to measure the state of the qubit while driving

the system. Therefore, a complete isolation of the system is impractical for the quantum

computing field. Nevertheless, one can take advantage of this dissipation and enable it as a

resource in our system using quantum bath engineering techniques.

In the bath engineering scheme, the dissipation is engineered to result in stabilized quantum

states [18, 19, 20] as well as enabling the realization of cat states [21]. In all of these

applications, the system-environment interaction is assumed to be weak, meaning that the

dissipation takes place in only one direction, with energy and information flow towards

the environment. However, once we step into the strong coupling regime, a back-flow of
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information from the environment to the system is also possible [22]. This new type of

dissipation only happens in a non-Makovian system and the remarkable outcome of this

phenomenon is that the current state of the qubit will depend on its entire history, giving

rise to the concept of memory. To emphasize on this, the concept of quantum memory has

been proposed to be one of the revolutionary aspects of quantum computing, which allows us

to build quantum networks by using the concept of quantum repeaters [23].

A non-Markovian environment can be used to preserve a state [24, 25, 26], achieve steady

states with higher coherence compared to their Markovian counterparts [27], and study

the noise correlations in multi-qubit processors [28, 29]. In addition to these applications,

this concept results in peculiar phenomena in open systems, such as an increase in the

distinguishability of two states over time [30] and the revival of an entangled state during

free evolution of the system [31]. These interesting phenomena can be utilized as a measure

for the degree of non-Markovianity of the system. In this thesis, we study the effects of

the non-Markovianity on the evolution of entanglement in a three-qubit superconducting

processor by taking into account one of the qubits as the environment to emulate a simple

non-Markovian bath.
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1.2 Circuit quantum electrodynamics

In this section, we introduce the central element of the quantum processors, the transmon

qubit. Next, we analyze the couplings between the transmon qubit and the cavity required

for the state readout of such circuits. Finally, we describe the heterodyne readout scheme

used for the simultaneous measurement of multi-qubit processors.

1.2.1 Transmon qubit

Since the inception of the superconducting quantum circuits, the transmon qubit [8], modeled

as a nonlinear oscillator, took a lot of attention due to having the longest coherence time

reported to date. This was achieved by adding a large capacitor to the circuit that makes

it insensitive to the charge noise. In addition, the ease of fabrication was another factor to

make this the most ubiquitous element of all the superconducting qubit processors.

We start the derivation of the transmon qubit Hamiltonian, by first looking at a simple

classical linear LC oscillator. In this circuit, the energy oscillates between the magnetic and

electric energies generated by the inductive L and capacitive C elements of the circuit. We

define the time-dependent energy and flux present in the circuit as [32],

E(t) =

∫ t

−∞
V (s)I(s) ds, (1.1)

Φ(t) =

∫ t

−∞
V (s) ds, (1.2)

where V (s) and I(s) are the time-dependent voltage and current of the circuit.
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Using the relations, V = LdI/dt and I = C dV /dt, we can derive the inductive and

capacitive energies using Eq. 1.1 and 1.2 as,

EC =
1

2
CΦ̇2, (1.3)

EL =
1

2L
Φ2. (1.4)

Using the Legendre transformation to define the capacitor charge as, Q = CΦ̇, we arrive

at the Lagrangian of the system,

L = EC − EL =
1

2

Q2

C
− 1

2L
Φ2. (1.5)

The Hamiltonian is now given as,

H = QΦ̇− L =
1

2

Q2

C
+

1

2L
Φ2 =

1

2

Q2

C
+

1

2
LI2, (1.6)

which is the expected Hamiltonian for a classical parallel LC circuit with the resonance

frequency of ωres = 1/
√
LC.

Promoting the charge and flux coordinates to operators, allows us to have a quantum

mechanical description of the above Hamiltonian (Eq. 1.6). These operators follow a com-

mutation relation as, [Φ, Q] = ih̄, where h̄ is the reduced Planck constant. Defining the

reduced flux and charge operators as φ = 2πΦ/Φ0 and n = Q/2e, with e denoting the charge

of the electron and Φ0 = h/(2e) representing the magnetic flux quantum, we can rewrite the
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quantum mechanical description of the Hamiltonian as,

H = 4ECn
2 +

1

2
ELφ

2, (1.7)

where EC = e2/2C is the charging energy generated by the capacitive element in the circuit

and EL = (Φ0/2π)
2/L is the inductive energy. Note that the reduced flux and charge

operators also follow a commutation relation as, [φ, n] = i.

The Hamiltonian in Eq. 1.7 resembles the quantum harmonic oscillator, where the energy

levels are equally split [33]. This fact is not suitable for qubit experiments where we need

to address the energy levels separately to imitate a two-level system similar to a spin-1/2

particle. Therefore, one has to add a non-linear element to the circuit in order to split the

energy levels unevenly.

To this end, we replace the inductive element in the circuit with a Josephson junction

(JJ) [34] consisting of two superconducting leads sandwiched by an insulator (see Sec. 4.3.1

for more details on the JJ fabrication). In contrast with the linear circuit, the voltage and

current relations are given as, I = Ic sin(φ) and V = (h̄/2e)dφ/dt, where Ic is the critical

current of the junction, defined as the maximum current that the JJ can handle before it

turns resistive. Using these relations and the same approach as the linear LC oscillator, we

can derive the Hamiltonian of a non-linear LC circuit consisting of a JJ as,

H = 4Ecn
2 − EJ cos(φ), (1.8)
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where EJ = IcΦ0/2π is the energy stored in the junction and Ec = e2/2Ctot is the charging

energy with Ctot = CJ + Cs being the sum of the capacitance from the JJ and the shunted

capacitor. The second term in the Hamiltonian (Eq. 1.8) is the essence of achieving an

anharmonic oscillator as the potential no longer has a parabolic shape.

To enter the transmon regime, we need to set the energy stored in the junction to be much

larger than the capacitive energy (EJ � EC). This can be easily achieved by connecting

the JJ to shunted capacitor pads to get Cs � CJ . The main advantage of this choice of

parameters is that the circuit will no longer be susceptible to charge noise.

We can now rewrite the charge and phase operators in terms of the creation (annihilation)

operators of a single excitation in the circuit, a†(a),

n = i n0(a− a†), (1.9)

φ = φ0(a+ a†), (1.10)

where n0 = (EJ/32EC)
1/4 and φ0 = (2EC/EJ)

1/4 are the zero point quantum fluctuations of

the charge and phase. Expanding the second term in the circuit Hamiltonian (Eq. 1.8) yields,

EJ cos(φ) =
1

2
EJφ

2 − 1

24
EJφ

4 +O(φ6). (1.11)

It is clear that the linear classical LC oscillator Hamiltonian can be recovered by only keeping

the first term of this expansion. However, we can arrive at the Duffing oscillator Hamiltonian

by keeping the terms up to the fourth term after applying rotating wave approximation and
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inserting the charge and phase operators defined above (Eq. 1.9 and 1.10),

H = ωqa
†a+

α

2
a†a†aa, (1.12)

with α = ω12 − ω01 = −EC/h̄ denoting the anharmonicity of the circuit defined as the

difference of the first and second transition frequencies of the qubit, which is always negative

and it typically lies in the range of 100− 300 MHz for a transmon qubit. Moreover, the first

transition frequency of the qubit is, h̄ωq =
√
8EJEC − EC . Due to the large anharmonicity

of the transmon qubit, we can drive the first two energy levels of the circuit reliably and

simplify the drive Hamiltonian as,

H = ωq
σz
2
, (1.13)

where σz is the Pauli-z operator.

In most experiments, we need to tune the frequency of the qubit to get to the desired spot.

The main reason behind this is that to apply some two-qubit gates, we need to bring the

qubits into resonance with each other to perform entangling (swap) gates [35]. In addition,

the current limitations in the fabrication of the superconducting circuits does not allow

for a safe margin of error in the frequency of the circuit, and having the tuning ability is

always desirable to circumvent the issues emerged from fabrication [36]. To achieve such a

functionality, we make use of superconducting quantum interference devices (SQUID) [2]. A

SQUID consists of two JJs in parallel, forming a loop for the flux to pass through. In this
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structure, the inductance of the JJ depends on the flux threading the loop as,

LSQUID =
Φ0

4πIc cos(πΦext/Φ0)
, (1.14)

where Φext is the external flux applied to the loop.

The effective Hamiltonian of a SQUID is in the form of,

H = 4ECn
2 − 2EJ | cos(πΦext/Φ0)| cos(φ). (1.15)

We can now define the flux-dependent junction energy as, E ′
J(Φext) = 2EJ | cos(πΦext/Φ0)|.

Since the frequency of the transmon is proportional to
√
EJ , applying an external magnetic

flux to the SQUID loop shifts its frequency with a maximum attainable frequency of h̄ωmax =

4
√
EJEC − EC , in the case of having symmetric JJs in the SQUID.

1.2.2 Qubit and cavity coupling

In circuit quantum electrodynamics (cQED), we are interested in coupling the qubit to the

standing waves of a harmonic oscillator to readout its state. To achieve such a coupling, the

qubit is placed near the oscillator to make sure of its coupling. The Hamiltonian of such a

system in the basis of the qubit {|i〉} can be written as a sum of the cavity, qubit, and the
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interaction terms,

H = Hc +Hq +Hint

= h̄ωca
†
cac + h̄

∑
j

ωj|j〉〈j|+ h̄
∑
i,j

gij|i〉〈j|(ac + a†c), (1.16)

where ωc is the resonance frequency of the cavity, a†c (ac) denote the creation (annihilation)

operators of the cavity, and gij represents the dipole coupling rate between the cavity and

qubit.

After applying a rotating wave approximation (eliminating the terms that excite the energy

for both the cavity and qubit) and assuming a limited number of transmon levels, we can

replace the qubit Hamiltonian with the Hamiltonian of an anharmonic oscillator (Eq. 1.12)

and rewrite the total Hamiltonian (Eq. 1.16) as,

H = h̄ωca
†
cac + h̄ωqa

†
qaq +

α

2
a†qa

†
qaqaq + h̄g(a†qσ− + aqσ+). (1.17)

where σ± are the raising and lowering operators of the cavity. This Hamiltonian can be

further simplified by only considering the first two energy levels of the transmon and treating

it as a two-level system (Eq. 1.13),

HJC = h̄ωc(a
†
cac +

1

2
) +

h̄ωq

2
σz + h̄g(a†qσ− + aqσ+), (1.18)
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where the vacuum energy has been added back and g = g0,1. This is the well-known Jaynes-

Cummings (JC) Hamiltonian [37] that describes the dynamics of the interactions between

the cavity and qubit in the cQED framework.

After diagonalizing the JC Hamiltonian (Eq. 1.18) in the bare basis, we arrive at the

dressed eigenstates [38],

|n〉|+〉 = cos(θn)|n− 1〉|e〉+ sin(θn)|n〉|g〉, (1.19)

|n〉|−〉 = − sin(θn)|n− 1〉|e〉+ cos(θn)|n〉|g〉, (1.20)

where tan(2θn) = 2g
√
n/∆ and the eigenenergies of, En,± = nh̄ωc ± (h̄/2)

√
4g2n+∆2. In

the limit where the qubit and cavity are in resonance (∆ = 0), we reach the vacuum-Rabi

splitting regime where the eigenstates takes the form, |n〉|±〉 = (|n〉|g〉 ± |n− 1〉|e〉)/
√
2 with

an energy difference of 2g, which results in oscillations between an excitation in the qubit

and cavity, typically known as a vacuum-Rabi oscillation.

1.2.3 Dispersive limit

The JC Hamiltonian (Eq. 1.18) can be further simplified once we are in the dispersive regime

where the frequency difference of the cavity and qubit is much larger than their coupling rate,

∆ = |ωq − ωc| � g. In this regime, the cavity and qubit cannot directly exchange energy. A

Schrieffer-Wolf transformation [39] using the unitary operator U = exp[g(aqa†c − a†qac)/∆]

can be applied to Eq. 1.18 to obtain the dispersive JC Hamiltonian by keeping the first two
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order of g/∆ ratio,

UHJCU
†/h̄ =

1

2
ωqσz + ωc(a

†
cac +

1

2
) + χa†cacσz +

χ

2
σz, (1.21)

where χ = g2/∆ is the dispersive shift. After defining ω̃q = ωq + χ to account for the

Lamb shift of the qubit and ignoring the vacuum energy of the cavity, Equation 1.21 can be

rearranged to clarify how we readout the state of the qubit,

Hdis/h̄ = (ωc + χσz)a
†
cac +

1

2
ω̃qσz. (1.22)

It is clear from this representation that the cavity frequency (as well as its phase) experiences

a shift of ωc ± χ contingent on the state of the qubit. This phenomenon is the backbone

of the quantum non-demolition (QND) measurement, which is stemmed from the fact that

the interaction and the drive Hamiltonians commute [40]. In this scheme, the measurement

result on the system is not altered during the readout action of the system.

The QND aspect of the measurement also depends on the number of photons present in the

cavity. In the case that we surpass the critical photon number nc = ∆2/(4g2), the dispersive

JC Hamiltonian (Eq. 1.22) no longer holds [7] and the outcome of the measurement will be

affected during the readout process of the cavity. Thereby, the critical photon number sets

an upper bound for the allowed power level for the readout to result in a QND measurement.
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To uncover a new interpretation of the dispersive JC Hamiltonian, we can rearrange the

terms in Eq. 1.21 such that,

Hdis/h̄ = ωca
†
cac +

1

2
(ωq + χ+ 2χa†cac)σz. (1.23)

This representation reveals two important frequency shifts of the qubit. First, we have the

Lamb shift of the qubit by χ/2, which is always present in the coupled qubit cavity system.

Due to the Lamb shift, the frequency of the qubit is always measured in a laboratory by

taking into account its effect. Additionally, there is a more interesting term, where a shift

of χ in the qubit frequency is dependent on the photon number in the cavity (a†cac). This

mechanism is known as the AC-Stark shift [41]. The AC-Stark shift induced by thermal

and microwave noise present in the system can result in the qubit frequency fluctuations

and cause dephasing. Therefore, it is crucial to properly thermalize the processor, utilize

microwave filters and attenuators to minimize the dephasing rate emerged from AC-Stark

shift [42].

Projective measurement

In the simplest scheme of the quantum measurement, we strive to measure the system

projected along different basis |i〉 (with i = x, y, z) to reconstruct the full density matrix.

Since in our measurement setup we always measure the system along the Z-axis, tomography

pre-rotations are required to project the system along the other axes. More details on the

tomography scheme is presented in Section 4.4.
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To briefly cover the theory behind this measurement scheme, we start by considering the

system in a state, represent by the density matrix formalism [33] as,

ρ =
∑
n

Pn|ψn〉〈ψn|, (1.24)

where Pn is the probability of finding the system in |ψn〉.

We can now define the operators Πi = |i〉〈i|, that project the state to the basis i, where

the projected density is written as,

ρ′ =
ΠiρΠ

†
i

Tr(ΠiρΠ
†
i )
, (1.25)

with the outcome probability given as, pi = Tr(ρΠi). To elaborate, every time we measure a

system, it collapses into an eigenstate of the i basis with a probability of pi. The projective

measurement is central to the experiments conducted in this work, where we are mainly

interested in reconstructing the density matrix of the system.

1.2.4 Qubit readout

Now we can shift gears from theory and discuss the actual experimental setup in the laboratory.

As mentioned in Sec. 1.2.3, the state of the qubit shifts the frequency of the readout cavity.

The goal of this section is to explain the microwave techniques required to harness this shift in

the frequency and utilize that to discriminate between two states of the qubit. For simplicity,

we first start by introducing the idea behind the measurement of a single qubit and then
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extend the method for the simultaneous measurement of multiple qubits. The derivations in

this Section are adapted from [43].

The best way to harness the state discrimination of a qubit is by examining the in-phase and

quadrature components of the voltage (IQ plane). The readout scheme starts by examining the

output signal from the fridge after interacting with the readout resonator (either reflection or

transmission) and the frequency of ωRO, which can be written as, s(t) = ARO cos(ωROt+θRO),

where ARO and θRO are the state-dependent amplitude and phase of the resonator that we

need to measure. It is easier to write the signal in the complex plane as,

s(t) = Re(AROe
iωROeiθRO), (1.26)

where Re(·) takes the real part of a complex function.

To measure the state of a qubit, we investigate the phasor of the signal that contains all

the information to discriminate the states of the qubit by considering the phase shift in the

resonator. The phasor can be written in terms of the in-phase (I) and quadrature (Q) as,

AROe
iθRO = ARO cos(θRO) + iARO sin(θRO) = I + iQ. (1.27)

The main advantage of using the I and Q is to perform a homodyne or heterodyne

measurement. To this end, we typically utilize analog IQ microwave mixer. To obtain the

desired amplitude and phase of the resonator, we send the signal s(t) (Eq. 1.26) from the

output of the cryostat to the RF port alongside a reference signal that enters the local
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oscillator (LO) mixer port in the form of, y(t) = ALO cos(ωLOt) as shown in (Fig. 1.1(a)). The

resulting signals in the I and Q ports of the mixer now are digitized with the intermediate

frequencies, ωIF = ωRO ± ωLO. One obtains the phase and amplitude of the resonator after

signal processing discussed below.

Homodyne readout

In the case of the homodyne measurement, the LO frequency is identical to the output signal

frequency from the fridge, resulting in a zero intermediate frequency. Hence, the I and Q

outputs from the mixer are both at DC and simply time-averaging the signal is sufficient to

obtain the amplitude and phase of the readout. For the Q port of the mixer, the signal is

multiplied by yQ(t) = −(ALO/2) sin(ωLO t) and similarly, we have yI(t) = (ALO/2) cos(ωLO t)

for the I port. The time averages over the time interval T are in the form of,

I =
1

2T

∫ T

0

dt s(t)yI(t) =
AROALO

8
cos(θRO), (1.28)

Q =
1

2T

∫ T

0

dt s(t)yQ(t) =
AROALO

8
sin(θRO), (1.29)

where the 1/2 factor behind the integral rises from the fact the signal (s(t)) is equally branched

in the I and Q. From these relations, we can write the amplitude and phase as,

ARO ∝
√
I2 +Q2, (1.30)

θRO = arctan(Q/I). (1.31)

17



The state discrimination of the signal occurs by having distinct phases contingent on

the state of the qubit. Homodyne measurement, however, suffers from two major issues.

First, the signal is demodulated to DC, which makes the measurement susceptible to 1/f

noise. The more hindering factor of this type of measurement is that it is quite complex and

rather expensive to extend this method to the multi-qubit measurements, where one needs to

simultaneously probe the state of the qubits. To overcome these problems, we introduce a

more general measurement method, known as the heterodyne measurement.

Heterodyne readout

The main difference between the heterodyne and homodyne measurement is that in the

heterodyne scheme, the local oscillator and the readout resonator frequencies are different,

giving rise to an intermediate frequency (ωIF = |ωRO − ωLO|) in the I and Q digitized output

signals (Fig. 1.1(a)). To generate such a signal, the up (down)-conversion techniques are

typically used to achieve the desired RO frequency. The reader is encouraged to visit Section

3.3.3 of [38] for more details on such microwave engineering methods.

Using the same approach as the homodyne measurement to take the time average of the I

and Q signals, we can write,

IIF =
1

2T

∫ T

0

dt s(t)yI(t) =
AROALO

8
cos(ωIFt+ θRO), (1.32)

QIF =
1

2T

∫ T

0

dt s(t)yQ(t) =
AROALO

8
sin(ωIFt+ θRO). (1.33)

18



In this case, the demodulated signals oscillate with at a frequency of ωIF. To digitally

demodulate the signal we first need to consider the I and Q signals at each time step during

the sampling time as,

IIF(n) =
AROALO

8
cos(ΩIFn+ θRO), (1.34)

QIF(n) =
AROALO

8
sin(ΩIFn+ θRO), , (1.35)

where n = t/∆t and ΩIF = ωIF∆t is the digital frequency with the sampling duration of ∆t.

Now the digital demodulation over the time interval (n1 : n2) is given as,

I =
1

∆n

n2∑
n=n1

IIF(n) cos(ΩIFn), (1.36)

Q =
1

∆n

n2∑
n=n1

QIF(n) sin(ΩIFn). (1.37)

Rewriting the demodulated signals (Eq. 1.36 and 1.37) in the complex form we have,

zIF(n) = I + iQ = AROALO exp(iθRO) exp(iΩIFn)/8. Hence, by multiplying each data point

of the demodulated signal by exp(−iΩIFn), we end up in the desired non-rotating frame with

a change in θRO, determining the state separation. Figure 1.1(b) shows the I −Q plane of a

demodulated signal with two separated clusters representing the ground and excited state of

the qubit after averaging the signal for 20,000 times.

Extending this to the simultaneous two-qubit readout, first we need to send the readout

signal basically as sum of two modulated signals with different frequencies to result in a
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signal consisting of two distinct sidebands required to probe the state of two cavities. Next,

the signals IIF and QIF (Eq. 1.32 and 1.33) are demodulated twice over a certain timespan

with different intermediate frequencies determined by the frequency of the cavities. This

results in separate I − Q blobs required to fully reconstruct the two-qubit density matrix

with the tomography prerotation pulses described later in Sec. 4.4.2.

Q
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Figure 1.1: (a) The IQ mixer wiring for the demodulation of the output signal. (b) The I-Q
plane representing the separated ground and excited qubit states.
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Chapter 2

Study of Microwave Loss in

Electron-Beam Evaporated Niobium

Superconducting Circuits

This chapter covers the results of our published article on the loss characterization in electron-

beam evaporated niobium [44]. It starts by a brief overview of various sources of loss in the

superconducting circuits in Section 2.1. Then in Section 2.2, I go over the basics of the metal

oxidation as well as a literature review on the niobium oxides known to this date. Section 2.3

discusses the well-known two-level system theory. The basics of the microwave resonators,

fabrication techniques, and the material characterizations are covered in Section 2.4. Finally,

Section 2.5 shows the microwave measurement setup and the loss characterization results of

the fabricated devices.
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2.1 Sources of loss in niobium superconducting
circuits

Recent achievements in quantum computing have shown that superconducting circuits are one

of the most promising platforms to realize the long-sought challenge of building a fault-tolerant

quantum computer [16, 45, 46]. The performance of such devices are, however, limited by

decoherence sources such as quasiparticles [47, 48, 49], magnetic vortices [50], and radiation

effects [51]. Recent advances in fabrication techniques and microwave engineering have

significantly reduced the impacts of the above-mentioned defects [52, 53, 54], thereby leaving

two-level-system (TLS) fluctuators as the most prominent source of loss in superconducting

circuits [55, 56, 57]. It has been shown that TLS defects are mainly located at metal-air (MA),

substrate-air (SA), and metal-substrate (MS) interfaces [58, 59, 60, 61, 62]. The contribution

of losses from these interfaces can be minimized by implementing careful surface treatments

thus enhancing the coherence of the devices [63, 64].

Owing to its high superconducting transition temperature, critical field, and low microwave

loss [65], niobium (Nb) has become one of the common materials used in the fabrication of

superconducting circuits [66, 67]. Nevertheless, the known stoichiometric range of its native

oxides results in a complex loss-inducing MA interface [68, 69]. Lately, it has been shown that

removing the oxides on the MA interface of Nb films can result in highly coherent devices,

proving MA as the lossiest interface in these circuits [70, 71]. Additionally, conventional

niobium deposition techniques, such as DC magnetron sputtering can result in a damaged
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MS interface due to the presence of high energy argon ions [72] and point defects stemming

from trapped argon atoms [73].

In this work, we investigate a refined deposition method [74] of Nb utilizing an ultra-high

vacuum (UHV) electron-beam evaporator as well as studying the impact of removing the

native surface oxide of the films on the TLS defect densities. We fabricate the Nb thin films

into coplanar waveguide (CPW) resonators due to their sensitivity to the true intrinsic TLS

defect density of the materials [58, 75] and characterize the loss induced by TLS defects in

the films.

2.2 Niobium oxygen system

The first step towards characterizing loss in Nb circuits is to fully comprehend its complex

oxide system. This section starts with covering the basics of the well-known Cabrera-Mott

oxidation model and further discusses the metallic niobium characteristics and its three

prominent oxides and their unique properties.

2.2.1 Cabrera-Mott oxidation model

As shown in [70], the native oxide layer of the superconductors has the most significant

contribution to the loss in superconducting circuits. Hence, studying the metal oxide growth

following the renowned Cabrera-Mott model gives us a better insight in identifying and

eliminating this source of loss in these circuits. This section covers the details behind this

model and how oxides form on the surface of thin films adapted from [76].
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The central assumption of the Cabrera-Mott model is that the electrons can freely ionize

the adsorbed oxygen on the surface of the metal. This ionization results in a uniform potential

on the metal-oxide interface due to the presence of the negatively charged oxygen anions and

the positive metal surface. This potential is commonly known as the Mott potential, Vm.

Therefore, the oxide growth occurs by the migration of the cations between the interatomic

sites and the metal-oxide interface. This migration requires an initial activation energy, W ,

which is much higher than the succeeding migration barriers and since the oxide thickness x

is thin in the initial stages, it can result in a strong electric field, E = Vm/x. Furthermore,

according to the Mott potential the migration barriers decrease by, qaE/2, where a is the

distance between two interatomic sites and q denotes the atomic charge.

Cabrera-Mott also predicts that the oxide growth rate is contingent on the number of point

defects on the metal-oxide interface due to their high activation barrier. The rate of the oxide

growth estimated by this model is given as,

dx

dt
=
D

a
exp( qaE

2kBTx
), (2.1)

where D, kB, and T denote the diffusion constant of the material, the Boltzmann constant,

and the temperature of the metal. Note that from Equation 2.1, we can see that the

Cabrera-Mott theory predicts a self-limiting oxidation process by a maximum thickness of,

xmax = qaE/2kBT . In the limit where the oxidation thickness is much thinner than its

maximum value, x � xmax we can derive the inverse-logarithmic law of the oxide growth
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rate,

x(t) ' 1

1− ln t
. (2.2)

This theory has been experimentally verified recently in the regrowth of the native surface

oxide of the niobium superconducting resonators [71]. In this study, the authors exposed the

samples to the ambient air for various time steps and realized an oxide regrowth governed by

the Cabrera-Mott theorem, further proving the efficacy of this model.

2.2.2 Niobium and its oxides

Niobium

Discovered in 1801, niobium (Nb) belongs to the group V in the periodic table with electrical

structure of Kr[4d45s1]. In its stable form, Nb is a metal crystallized in a body-centered cubic

(BCC) lattice with a high melting temperature of 2477 ◦C and an electrical resistivity of

15.2 µΩ/cm at room temperature [77]. Nb forms stable nitrides, carbides, borides, and silicides

[78]. Therefore, it has been widely used in various industries from making high-strength

steels used in the pipelines for gas and oil transportation to the making of nickel-based

superalloys used in aircraft engines to prevent abrasion and corrosion [79, 80]. Adding to

these applications, Nb is a type-II superconductor with a high critical temperature of Tc ' 9.3

and a critical magnetic field as high as Bc2 ≡ 420 mT at 0 K [77, 81], making it ideal for the

fabrication of low-loss superconducting circuits [66, 82].
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Due to having a valence electron in its 4d energy level, Nb can form a thick native oxide

layer with various stable oxygen compounds [83]. It has been reported that the thickness of

this oxide layer can be as high as 6 nm [84] with a composition mostly consisted of niobium

penta-oxide. The composition and thickness of such oxide is still a vast area of research due

to its intricacy. However, it has been proposed that one can take advantage of heating up

niobium above 2000 K in UHV [81] to remove the native oxide of niobium. Furthermore, the

surface of the niobium can be passivated after removing the oxide to form a protective layer

against ambient air, using conventional nitridation techniques [85].

Niobium monoxide

The very first oxidation state of niobium, niobium monoxide (NbO) represents Nb in its 2+

charge state. NbO forms a face-centered cubic (FCC) structure [86]. NbO has the highest

point defects among all the transition metal monoxides with 25% of ordered vacancies in both

the oxygen and niobium sublattices [87]. Niobium monoxide has a resistivity of 21 µΩ/cm

with a melting point of ∼1940 ◦C [88, 89].

Remarkably, NbO shows superconducting properties below the critical temperature, Tc '

1.38 [90] and it has been also explored that increasing the ratio of oxygen (niobium) in the

compound significantly decreases (increases) the critical temperature due to the stark change

in the resistivity of the sample [90]. To elaborate, this drastic change in the resistivity occurs

because NbO can easily form a mixed-phase sample upon a slight change in the ratios of the

oxygen and niobium present in the sample. There has not been any report on the applications
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of niobium monoxide in the industry to date. Nonetheless, because of the enhanced oxygen

diffusion properties of NbO, it can be a viable option for niobium-based electrolytic capacitors

[91].

Niobium di-oxide

Moving onwards to the second oxidation state, we have niobium di-oxide (NbO2) with niobium

present in its 4+ charge state. NbO2 crystallizes in a tetragonal structure with a rutile

sublattice [92] and a melting point of ∼1901 ◦C [77]. It is synthesized by controlled oxidation

of Nb or NbO [93] as well as a reduction from Nb2O5.

At temperatures between 797 and 808 ◦C, NbO2 experiences a crystal transformation to

a rutile lattice as well as a second-order phase transition [92, 94]. This can be understood

as a semiconductor-metal transition with a metallic conductivity of 103 1/Ω · cm at these

high temperatures [95]. In addition, the tetragonal phase of the niobium di-oxide has been

characterized an n-type semiconductor with a band gap of 0.5 − 1.2 eV and an electrical

resistivity in the oder of 104 Ω · cm [94, 96]. NbO2 also exhibits abrupt jumps in its current-

voltage characteristics indicating a resistive switching properties [97].

In terms of applications, NbO2 has been utilized for making biosensors using Nb/NbO2

electrodes [98]. Furthermore, the chemical stability of niobium di-oxide has inspired its

application in making nanowires using chemical vapor transport method [99].
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Niobium pentoxide

The last but not the least, we have the most thermodynamically stable oxide state of the

niobium, known as niobium pentoxide (Nb2O5) with Nb in its 5+ charge state. Since

all the electrons in the 4d energy level are bounded to the oxygen, Nb2O5 has the lowest

electrical conductivity compared to the aforementioned oxide states [100]. Adding more

to the complexity of the niobium-oxygen system, Nb2O5 can occur in various crystalline

structures contingent on the preparation methods each with distinct physical properties.

More precisely, niobium-pentoxide crystallizes in tetragonal, hexagonal, orthorhombic, and

monoclinic structures [101, 102] with each structure taking up various phases, leading to a

total of 4 structures with 9 different polymorphs [103, 104]. As an example, the monoclinic

R-Nb2O5 phase can be formed by heating the niobium oxychloride (NbOCl3) at 273 ◦C [105].

Despite its complexity, niobium pentoxide has the most promising application in technology.

It has been shown that Nb2O5 exhibits a well-known behavior known as the memory in solids.

This characteristic is described as how Nb2O5 behaves differently to the same heat treatment

contingent on its original synthesis attributed to the present impurities and structural defects

in the samples [106]. The immediate application following this feature is the resistive random

access memory based on the passive electronic component, named memristor [107]. The

resistance of the memristor is dependent on the history of the current passed through it.

Hence, having a material such as Nb2O5 with memory of is origin can have direct applications

in the realization of such an intriguing component.
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In addition to all the well-studied oxides mentioned above, niobium has a range of non-

stoichiometric oxides. These oxides are divided into two groups, one with stoichiometric

ranges between Nb and NbO with 4 metastable oxides [108]. The other group is ranged

between NbO2 and Nb2O5 [109]. A comprehensive study of these metastable oxides is beyond

the scope of this dissertation and the interested reader is encouraged to examine this review

article for more details [110].

2.3 Two-level system model

This section starts with reviewing the background of the two-level system (TLS) model and

moves onto the semi-empirical treatment proposed by Gao in 2008 [111] to quantify the TLS

loss in superconducting circuits.

Known to be originated from the thermal, acoustic, and dielectric properties of the materials

at milliKelvin temperatures, the TLS fluctuators are one of the main sources of loss in the

superconducting circuits [112]. The unsaturated TLSs are excited by absorbing a photon and

relaxed by dissipating that photon to the bath, which is the main decoherence mechanism

in the superconducting circuits. Even though the origin of the TLS loss is yet not clearly

determined [113], it has been proposed that the loss might be due to the presence of the polar

molecules, e.g. hydroxyl bonds OH−, and other impurities, resulting in a dipole coupling

with the rf frequency electric fields [114]. In addition, there has been experimental results

demonstrating that the TLS loss mainly resides in the various interfaces of the circuits with
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the highest contribution from the metal-air (MA) interface, where the amorphous native

surface oxide of the metal is located [115].

The standard TLS model proposed by Anderson in 1972 [116] and Phillips in 1987 [117],

predicts a broad spectrum of the tunneling states in an amorphous medium. These states

incorporate dipole moments, capable of coupling to electric fields. Therefore, the TLS is

referred to as one or a group of atoms tunneling between two sites. In this model, the system

Hamiltonian in the local basis of two states {|φ1〉, |φ2〉} can be written as,

H =
1

2

−∆ ∆0

∆0 ∆

 , (2.3)

where ∆ is the energy difference between two states and ∆0 denotes the tunnel splitting.

For this model, we assume a uniform distribution for ∆ as,

P (∆,∆0)d∆d∆0 =
P0

∆0

d∆d∆0, (2.4)

with P0 representing the two-level density of states.

The Hamiltonian (Eq. 2.3) can be diagonalized with eigenenergies, E(±)/2 = ±
√
∆2 +∆2

0

and eigenstates in the form of,

|ψ1〉 = cos θ|φ1〉+ sin θ|φ2〉,

|ψ2〉 = sin θ|φ1〉 − cos θ|φ2〉, (2.5)
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where θ = 1/2 tan−1 (∆0/∆).

Furthermore, in the new basis representation {|ψ1〉, |ψ2〉} the Hamiltonian can be rewritten

as, H0 = |E|/2σz, with σz denoting the Pauli-z matrix.

Now considering the TLS interacting with an external electric field ~E , we can write the

effective Hamiltonian in the diagonalized basis as,

Hint = [
∆

|E|
σz +

∆0

|E|
σx] ~d0 · ~E , (2.6)

where ~d0 denotes the maximum transition dipole of a TLS with energy splitting E. The

first term in Equation 2.6 is attributed to the permanent dipole moment and the latter term

describes the transition dipole moment.

The total Hamiltonian of a TLS interacting with an external field is given as, H = H0+Hint.

One can immediately notice the similarities of this Hamiltonian to that of a 1/2 spin interacting

with a magnetic field in the form of,

H = −h̄γ ~B · ~S, (2.7)

where ~S = σ/2 with ~B consisting of the static ( ~B0) and oscillating parts (2 ~B′ cosωt) resulting

in two terms similar to Equation 2.6, and γ represents the gyromagnetic ratio.
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For such a system in the presence of the longitudinal and transverse relaxation times T1

and T2 the Bloch equations of motion are given as,

d

dt
〈Sx(t)〉 = γ(〈Sy〉Bz − 〈Sz〉By)−

〈Sx〉
T2

= 0,

d

dt
〈Sy(t)〉 = γ(〈Sz〉Bx − 〈Sx〉Bz)−

〈Sy〉
T2

= 0,

d

dt
〈Sz(t)〉 = γ(〈Sx〉By − 〈Sy〉Bx)−

〈Sz〉 − Seq
z [Bz(t)]

T1
= 0, (2.8)

with Seq
z = tanh(h̄γBz(t)/2kT )/2.

Solutions to Equation 2.8 are given in [118]. Using the solutions, the magnetic susceptibili-

ties, χi(ω) defined as,

Sx = χx(ω)h̄γBx,

Sz = χz(ω)h̄γBz, (2.9)

can be resolved as,

χx(ω) = −S
0
z

2h̄

[
1

ω0 − ω + iT−1
2

+
1

ω0 + ω − iT−1
2

]
,

χz(ω) =
dSeq

z

d(h̄γB0)

1− iωT1
1 + ω2T 2

1

, (2.10)
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where ω0 = −γB0 and

S0
z =

1 + (ω0 − ω)2T 2
2

1 + (γB′
x)

2T1T2 + (ω0 − ω)2T 2
2

Seq
z . (2.11)

Given in Equation 2.10, the susceptibilities have distinct origins. χx(ω) is attributed to the

resonant response of the spins, while χz(ω) represent more of a relaxation process. Following

the same approach, we can define the susceptibility tensor of a TLS in an electric field as,

#„
#„χ res(ω) = −σ

0
z

h̄

[
1

ωE − ω + iT−1
2

+
1

ωE + ω − iT−1
2

]
~d~d, (2.12)

where

σ0
z =

1 + (ωE − ω)2T 2
2

1 + Ω2T1T2 + (ωE − ω)2T 2
2

σeq
z (E),

σeq
z (E) = − tanh( E

2kBT
), (2.13)

with ωE = E/h̄, ~d = ~d0∆0/E, and Ω = 2~d · ~E/h̄ denotes the Rabi frequency.

At microwave frequency ranges (∼GHz) and milliKelvin temperatures, we can write the TLS

contribution to the dielectric function in presence of external electric fields with orientation ê

as,

εTLS(ω) =

∫∫∫ [
ê ·

#„
#„χ res(ω) · ê

]
P (∆,∆0) d∆ d∆0 dd̂ = ε′TLS(ω)− iε′′TLS(ω). (2.14)
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Under the assumption of the weak field and Ω2T1T2 � 1, Eq. 2.14 can be written as,

εTLS(ω) = −2Pd20
3

[
Ψ
(1
2
− h̄ω − ih̄T−1

2

2iπkBT

)
− log Emax

2πkBT

]
, (2.15)

with Ψ denoting the complex digamma function and Emax representing the maximum TLS

energy splitting.

With the above relations for the dielectric function, the impact of the TLSs on the frequency

shift (∆fr) and the internal quality factor (Qi) as a function of the temperature can be

derived using circuit quantum electrodynamics [119] as,

∆fr
fr

= −
∫
Vh
ε′TLS(ω)|~E|2 d3~r

2
∫
V
ε|~E|2 d3~r

=
Fδ0TLS
π

[
ReΨ

(1
2
− h̄ω

2iπkBT

)
− log h̄ω

2πkBT

]
, (2.16)

1

Qi(T )
= −

∫
Vh
ε′′TLS(ω)|~E|2 d3~r∫
V
ε|~E|2 d3~r

= Fδ0TLS tanh(
h̄ω

2kBT
), (2.17)

where δ0TLS = 3Pd0/2εh and the filling factor F is defined as,

F =

∫
Vh
εh|~E|2 d3~r∫

V
ε|~E|2 d3~r

, (2.18)

defined as the ratio of the electric energy stored in the material occupied by TLS with volume,

Vh to that of the entire resonator with a total volume of, V .

Moreover, the power-dependence relation of the TLS-induced loss in the superconducting

resonators under the assumption of the strong field after solving for the full integral in
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Eq. 2.14 is given as,

δTLS(|~E|) = Fδ0TLS
tanh( h̄ω

2kBT
)√

1 + | ~E
~Ec
|2
, (2.19)

with |~Ec| denting the critical electric field which above the TLS contribution gets saturated

and |~E| representing the magnitude of the electric field present in the sample. This relation

can be rewritten in terms of the photon numbers present in the resonator in the form of,

δTLS(〈n〉) = Fδ0TLS
tanh( h̄ω

2kBT
)√

1 + 〈n〉
nc

, (2.20)

where nc is the critical photon numbers in the resonator and the number of photons, n is

directly proportional to the microwave power applied to the resonator Papp as,

〈n〉 = 2

h̄ω2

Z0

Zr

Q2

Qc

Papp. (2.21)

Here, Z0 is the characteristic impedance of the microwave environment and Zr is the impedance

of the CPW resonator. Q and Qc denote the total and coupling quality factors of the resonator.
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2.4 Superconducting co-planar waveguides

This section covers the basic foundations of microwave resonators treated as a simple

inductance-capacitance circuit and further develops on the nano-fabrication techniques used

to realize such circuits in the superconducting platform. Various material characterization

techniques to identify the main sources of loss in such circuits are also described later in this

section.

2.4.1 Basics of microwave resonators

Microwave resonators have a vast range of applications, from amplifiers [120] and filters

[121] to quantum computing, where they are used to probe the state of a quantum bit [122].

Here, we start by studying a simple lumped element parallel resonator, which can be easily

translated into the co-planar waveguide resonators used in this study to characterize the

TLS-induced loss of the niobium films.

The simplest form of a resonator is a parallel circuit consisting of resistive, inductive,

and capacitive components represented as R, L, and C. Figure 2.1(a) shows the diagram

of such a circuit for a hanger-style microwave resonator with a coupling capacitance of Cc.

Conventionally, the resonators are fabricated using thin superconducting metal films on a

substrate with a thickness of a few hundred microns. The designed layout of a short-circuited

λ/4 fabricated hanger-style co-planar waveguide (CPW) resonator with capacitive coupling

to the feedline is shown in Fig. 2.1(b). Around resonance, the input impedance of such a
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circuit is given as,

Zin =
( 1
R

+
1

iωL
+ iωC

)−1
, (2.22)

where the resonance frequency of the resonator is, ωres = 1/
√
LC.

Moreover, to quantify the resonator performance, we define the quality factor of the device

as the ratio of the average energy stored in the device to the energy that is lost due to the

various decoherence mechanism mentioned above. The resonator is typically coupled to a

feedline by either inductive or capacitive coupling, contributing to the total quality factor.

The coupling quality factor, Qc is dependent on the gap between the coupling lead and the

feedline as well as the length of the coupling lead, lc (Fig. 2.1(b)). The total quality factor of

R0

Cc

RLC R0

(a) (b)

40 μm 

�c

��� �����

Figure 2.1: Hanger-style CPW microwave resonator represented as (a) a simple parallel RLC
circuit and (b) the actual designed layout with the colored areas indicating the metallized
regions.

37



the resonator is given as,

1

Qr
=

1

Qi
+

1

Qc
, (2.23)

with Qi representing the internal quality factor of the resonator. If the loss in the system is only

limited by the TLS defects, then Qi will be a quantity of the TLS-induced loss. Additionally,

the inverse of the quality factor is defined as the loss tangent, 1/Qi = tan δTLS ' δTLS for

tan δTLS < 10−2.

To extract the quality factors of the devices, the Lorentizan transmission profile of the

resonators is fit to a function in the form of,

S21(f) = ae−2πifτ

[
1− Qre

−iφ0/Qc

1 + 2iQr(
f−fr
fr

)

]
, (2.24)

where fr is the resonance frequency of the device. The fitting parameters a, τ , and φ0

represent the gain, cable decay, and the rotation of the resonance circle in the complex plane.

This fitting method is commonly known as the φ-rotation method, proposed by Gao in 2008

[111].

It has been shown that the electric field strength in the CPW is proportional to its center

width size [58]. To elaborate, the smaller gap and width result in stronger fields, e.g. increasing

the center width from 3 to 20 µm, reduces the filling factor by an order of magnitude. In

this work, we set the center width to 3 µm in order to report the true filling-factor-adjusted

loss tangent (FδTLS) of the deposited niobium films. Moreover, the Qc of the resonators has
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been fixed to ∼600, 000 by adjusting the above-mentioned dimensions using the finite-element

simulations described in details in Section 4.2.2.

2.4.2 Fabrication and material characterization

Samples are fabricated on a 2-inch, (100)-oriented, high resistivity (> 8 kΩ · cm), single-side

polished intrinsic silicon substrate cleaned in a Piranha solution (3:1 mixture of sulfuric

acid and hydrogen peroxide) at 120 ◦C for 10 minutes followed by a 5-minute etch in a

buffered-oxide-etch (BOE) solution to remove organic contaminants as well as the native

silicon surface oxide [63, 123]. The BOE solution is a 6:1 mixture of ammonium fluoride

(NH4F) and hydrofluoric acid (HF). The substrate is then pumped down in a ultra-high

vacuum (UHV) electron-beam evaporator (AJA ATC-ORION-8E) with a base pressure lower

than 5 nTorr.

After loading the wafer, a 200 nm layer of 99.95% purity Nb is evaporated onto the

substrate at a rate of 1.2 nm/min, which is commensurate to the previous study [74]. Note

that the substrate is inevitably heated during this process due to the high melting point of

Nb. Since pure Nb quickly adsorbs impurities [65], especially when heated, we let the sample

remain under UHV conditions to cool down for 1-2 hours prior to proceeding to the next

steps.

We spin and softbake the Nb samples with a high resolution photoresist (MicroChem S1805)

and pattern the coated wafer with a Heidelberg DWL 66+ photolithography system. The

pattern consists of 8 hanger-style, quarter-wavelength CPW resonators with a gap (width)
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of 2 µm (3 µm). Devices are designed to have frequencies ranging from 5.2 to 7 GHz with

coupling quality factors ∼6× 105. We develop the exposed resist by using a metal-ion-free

solution (MicroChem MF-319). A reactive ion etch system (Oxford Plasmalab 100) is then

used to etch the samples using a fluorine chemistry (Ar + SF6). To assist the removal of

the residual resist, the samples are first ashed for 30 seconds using oxygen plasma (Plasma

Etch PE 50, 100 W, 15 cc/min) and then soaked in N-Methyl-2-pyrrolidone (NMP) heated

to 70 ◦C for 8 hours. At last, samples are coated with the photoresist (S1805) to enhance

their preservation over time [70] and protect against damage caused by dicing. Figure 2.2

depicts the complete fabrication flow of the CPW resonators.

Cleaning the 
substrateSi

Si
Nb Nb 

deposition

Si
Nb

Nb

Phtoresist

UV light

Photo-
lithography

Si
Nb

Phtoresist

Plasma

Phtoresist

Si
Nb Nb

Dry etch

O2 clean +
lift-off

Figure 2.2: Fabrication flow of a superconducting Nb CPW resonator using a subtractive
process.

40



Surface topography

Figure 2.3 illustrates the surface topography of the Nb films fabricated into CPWs (Fig. 2.3(a))

using the above-mentioned techniques. The scanning electron microscopy (SEM) image shows

the elongated Nb grains formed on the surface (Fig. 2.3(b)). The dark-field scanning

transmission electron microscopy (STEM) cross-sectional image of the etched films shows that

our etching process is anisotropic (Fig. 2.3(c)). In this study, the etching has been engineered

to result in trenches shallower than 500 nm for all the fabricated devices to maintain the

effective substrate dielectric constant in the devices, and thereby avoid deviations from the

desired resonance frequencies [124].

The STEM image shows grain sizes greater than 20 nm (Fig. 2.3(d)) exceeding previous

values reported using the same deposition technique [74]. Correlation between the grain sizes

and materials loss has been recently studied [125], substantiating the advantage of larger grain

sizes by treating the grain boundaries as Josephson weak-links [126]. Finally, the films resulted

in a superconducting transition temperature Tc = 9.20 ± 0.06 K and a residual resistivity

ratio (RRR) of 4.8 (Fig. 2.3(e)) exhibiting the high quality of the evaporated Nb, in accord

with recent results with sputtered Nb [125]. The RRR is calculated by dividing the surface

resistance at 310 K to that right before the transition at 9.258 K as 2.33 Ω/0.49 Ω ' 4.8.

Note that the films deposited at higher pressures (> 6 nTorr) resulted in a significantly

lower transition temperature Tc ' 7.85 K as well as a RRR of only 1.8, which can be

attributed to the fact that having a low deposition rate makes the quality of the films
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extremely sensitive to the deposition environment. Therefore, having a UHV deposition

environment is a crucial condition for achieving high quality films using this technique.
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Figure 2.3: Surface topography of the niobium films. (a) The scanning electron microscopy
image of a fabricated CPW resonator. (b) Dense grains of niobium formed on the surface.
(c) Cross-sectional TEM image of the CPW trench. (d) The STEM image of the grains. (e)
The surface resistance of the films against temperature. This figure is adapted from [44].

42



Metal-air interface characteristics

Transmission electron microscopy (TEM) images show a clear band of about 5 nm of oxide

on top of the Nb, which is reduced to ∼1.7 nm after removing the surface oxides in a BOE

solution for 20 minutes (Fig. 2.4(a, b)). Note that it takes about 20 minutes to transfer the

sample to the characterization instruments, during which the oxide grows back following

Cabrera-Mott theory [71]. To identify the elements present in the films, we perform electron-

energy loss spectroscopy (EELS) measurements. Averaged EELS spectra are displayed in

Fig. 2.4(c, d) along the red (orange) lines for the oxide (metal) regions of the TEM images in

Fig. 2.4(a, b). The regions indicated by red lines exhibit a clear peak located at ∼535 eV,

which corresponds to the presence of oxygen. Below this NbOx band, there is no sign of this

peak. Furthermore, EELS data revealed a clear reduction in the average oxygen content from

∼50% in the oxide band to less than 5% while scanning inside the metallic Nb film indicating

the absence of oxygen impurities in the films.

We employ X-ray photoelectron spectroscopy (XPS) to further investigate the compounds

present on the surface. Here we utilize a PHI VersaProbe II surface analysis instrument

equipped with an aluminum K-alpha X-ray source. Under the optimal neutralization settings,

an overall shift of ∼2.7 eV from the nominal binding energy values is observed due to the

surface charge of the Nb films. The presented data have been adjusted to account for this shift.

We examine the XPS spectrum of Nb3d by curve fitting the data using the Lmfit [127] package.

The fits reveal peaks for three distinct niobium oxides (Fig. 2.4(e, f)). These peaks were

fit using the “skewedVoigt” model for asymmetric metallic Nb peaks and the “pseudoVoigt”
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model for all the other peaks using a Shirley inelastic background with 3d5/2 binding energies

located at 202.05, 203.40, 205.84, and 207.38 eV for Nb, NbO, NbO2, and Nb2O5 respectively

for the untreated film. As discussed in Section 2.2.2, NbO is superconducting, with a

transition temperature of 1.38 K [128]. Nb2O5 is the most thermodynamically stable state

of the niobium-oxygen system with the highest binding energy (∼207 eV) and the lowest

electrical conductivity [129]. Due to its various crystalline phases and physical properties,

Nb2O5 has been considered as one of the main sources of defects present on the surface of Nb

[110]. NbO2 also contributes to the loss due to oxygen vacancies [125], which has the lowest

participation in the deposited films reported here.
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Figure 2.4: Characterized metal-air interface with and without post-cleaning the film using
(a, b) TEM, (c, d) EELS, and (e, f) XPS. This figure is adapted from [44].
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2.5 Measurement setup and microwave loss char-
acterization

Prior to placement in the measurement cryostat, devices are cleaned for 7 minutes in an

ultrasonic bath of acetone and isopropyl alcohol to remove particles on the samples and strip

the protective photoresist. The transfer time to the fridge is kept under 90 minutes for the

BOE post-cleaned samples to minimize oxide regrowth on the devices. The samples are

placed inside palladium-plated copper microwave launch packaging surrounded by Cryoperm

shielding to protect the devices from infrared radiation and external magnetic fields. Mounted

devices are cooled inside an adiabatic demagnetization refrigerator (ADR) with a base

temperature of 50 mK. Figure 2.5 shows the fridge diagram of the experiment where we

utilize 70 dB of attenuation inside the fridge as well as the room temperature attenuators to

reach the single-photon regime. A low-noise, high-gain amplifier is installed in the output line

at the 4 K stage to amplify the signal. Moreover, we use two room-temperature amplifiers to

further increase the transmission level of the signal.

The resonator transmission, S21, is measured using a vector network analyzer in an

experimental setup described previously [59, 130, 131]. Data is collected with the ADR in the

temperature regulation mode. Figure 2.6(a) displays the transmission near the resonance of a

particular device (indicated by the arrow in Fig. 2.6(c)) at low power. The quality factors are

extracted by employing the φ-rotation method (Eq. 2.24). Figure 2.6(b) displays the internal

loss tangent, δint (inverse of the internal quality factor Qi) as a function of average photon

number [51] of the BOE-cleaned device mentioned above. Using the TLS model (Eq. 2.20),
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Figure 2.5: ADR diagram of the resonator’s measurement setup indicating all the utilized
cryogenic components.

we extract the filling-factor-adjusted TLS loss tangent (FδTLS), where F is defined as the

fraction of the resonator’s total loss stored in the TLS material. Figure 2.6(c) displays FδTLS
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for several devices versus resonance frequency. The FδTLS values are an order of magnitude

smaller for the case of post-cleaned devices (red circles) than the untreated devices (blue

squares) resulting in values as low as 0.15 ppm. The dashed line indicates the average value

of FδTLS of the post-cleaned devices. The average value is 0.32 ppm, well below previous

results using the same CPW geometry [124]. The average low power Qi of the post-cleaned

devices is 1.13× 106. In contrast, the untreated devices (blue squares) show an average TLS

loss tangent of 1.21 ppm with an average single-photon regime Qi of 3.35× 105 comparable

with other sputtered niobium studies [59, 132].

Figure 2.6(d) displays measurements of the internal loss of the aforementioned device

versus temperature at a fixed power of −93 dBm. Based on the TLS model, the TLS-induced

loss tends to saturate at high temperatures [58, 75] as shown in Fig. 2.6(d). By fitting to the

TLS model using Equation 2.17, we obtain a FδTLS of 0.44 ppm in accord with the power

scan.

The above results agree with previous findings [70, 71, 115] that the MA interface is one

of the main sources of TLS loss. In our study, we have employed a small CPW gap, which

results in a significantly higher concentration of electric field inside the trenches of the CPW,

therefore maximizing the coupling with the TLS fluctuators at the interfaces of the material

as well as resulting in a larger filling factor value [51, 133]. Hence, devices with larger features

[70] would reduce this filling factor and electric field density thereby reducing FδTLS by nearly

one order of magnitude as well as yielding higher internal quality factors [51, 58].
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To conclude, we have refined a method to deposit extremely low-loss niobium films for

superconducting CPW resonators using a UHV electron-beam evaporator. With post-cleaning

of the Nb surface, devices demonstrated loss tangents well-below previous limits, highlighting

the role of the MA interface as one of the main sources of loss in superconducting devices.

Moreover, the characterization results show a significant reduction in the surface oxide

thickness, verifying the efficacy of our cleaning method. Future work may explore a practical

passivation scheme to bypass the MA interface-induced losses for the fabrication of highly

coherent superconducting qubit processors.
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Figure 2.6: Microwave measurement results of the fabricated resonators. (a) The transmission
of a resonator near resonance. (b) The internal loss of the resonator indicated with an arrow
in (c) as a function of the average photon number present in the resonator. (c) The FδTLS
of 17 resonators with and without post-cleaning. (d) The internal loss as a function of the
temperature for the indicated resonator. This figure is adapted from [44].
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Chapter 3

Theory of Open Quantum Systems

3.1 Quantum system dynamics

Studying the evolution of the quantum systems allows us to explore intriguing features. For

instance, in the presence of a weak interaction with the environment, the system’s evolution

is governed by a non-unitary superoperator, giving rise to dynamics deviating from closed

system Schrödinger equation governed evolution. The dynamics can be further generalized

by stepping into a region where there is a strong interaction between the system and the

environment. In some cases, such an open system exhibits memory effects. This section

starts by formulating the dynamics of both closed and open quantum systems. Then I move

onto the detailed description of dynamics in a non-Markovian open quantum system and the

various methods used to quantify the non-Markovianity of a system.
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3.1.1 Closed system dynamics

In the absence of dissipation channels, the dynamics of a quantum system is governed by the

well-known Liouville von-Neumann equation. To derive such dynamics, we can start by the

Schrödinger equation given as,

ih̄
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉, (3.1)

where h̄ is the reduced Planck’s constant, |ψ(t)〉 represents the state of the system at time t,

and H(t) denotes the time-dependent Hamiltonian of the system. For simplicity, h̄ is set to

one for the rest of this chapter.

The solution of Eq. 3.1 can be written in terms of a unitary operator, describing the

evolution of the system with the initial time t0. This operator relates the state of the system

at two different time steps as,

|ψ(t)〉 = U(t, t0)|ψ(t0)〉. (3.2)

Substituting Eq. 3.2 into 3.1, we can solve for the unitary operator as,

U(t, t0) = T exp(−i
∫ t

t0

H(s) ds), (3.3)

where T is the time-ordering operator, which orders the product of the time-dependent

operators.
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Assuming a state initialized at t0 in the form of,

ρ(t0) =
∑
j

aj|ψj(t0)〉〈ψj(t0)|, (3.4)

with aj indicating the weight of state |ψj〉, we can write the time evolution of such a state

using Eq. 3.2 as,

ρ(t) = U(t, t0)ρ(t0)U
†(t, t0). (3.5)

Note that the density matrix, ρ, is positive, self-adjoint and has a unit trace by definition

[134]. Now by taking the time derivative of Eq. 3.5, we obtain the well-known Liouville

von-Neumann equation,

d

dt
ρ(t) = −i[H(t), ρ(t)]. (3.6)

To generalize the Liouville von-Neumann equation, we take into account a number of

systems interacting with each other. This results in a more complicated Hamiltonian in the

form of,

H(t) = H0 +HI(t). (3.7)

Here, H0 is the Hamiltonian of the systems in the absence of the interactions and HI(t)

represents the time-dependent interaction Hamiltonian. To solve for the evolution of such
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Hamiltonian, we move to the interaction picture as follows. Considering the unitary evolution

of the total Hamiltonian as U(t, t0), the unitary operator evolution in the interaction picture

is then given by,

UI(t, t0) = U †
0(t, t0)U(t, t0), (3.8)

where U †
0(t, t0) = exp(−iH0(t− t0)) represents the time evolution of the system, excluding

the interactions.

Using Eq. 3.8, the density matrix in the interaction picture is given as,

ρI(t) = UI(t, t0)ρ(t0)U
†
I (t, t0). (3.9)

Taking the time derivate of the density matrix ρI(t), leads us to the von-Neumann equation

in the interaction picture,

d

dt
ρI(t) = −i[H ′

I(t), ρI(t)], (3.10)

where the interaction Hamiltonian in the interaction picture is given as,H ′
I(t) = U †

0(t, t0)HIU0(t, t0).
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3.1.2 Presence of the environment

In spite of the previous case, here we examine the evolution of an open quantum system

coupled to a bath. Therefore, in addition to the evolution of the closed state, alone, we need to

take into account the dissipations caused by the coupling to the environment. The evolution

of such an open system under certain approximations that we discuss later, is governed by

the well-known Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equation [135, 136].

The main reason behind applying these approximations is to simplify the calculations of

the dynamics of a system where the bath can have large degrees of freedom. For a system

coupled to a bath with Hamiltonians denoted by, HS and HB, the total Hamiltonian of the

coupled system in the system and bath Hilbert space (HS ⊗HB) is written as,

H(t) = HS ⊗ IB + IS ⊗HB +HI(t), (3.11)

where HI(t) represents the interaction Hamiltonian of the system and bath.

The dynamics of the singled out system is given by tracing out the bath degrees of freedom,

ρS(t) = TrB(ρSB(t)), (3.12)
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with ρSB representing the total density matrix of the coupled system and the partial trace

over the environment is defined as,

TrB(ρSB) =
∑
j

ρS ⊗ 〈ψBj
|ρB|ψBj

〉, (3.13)

where ψBj
represents the state of the environment. Furthermore, the evolution of the system

after tracing out the environment is given by the von-Neumann equation as,

d

dt
ρS(t) = TrB(−i[H(t), ρSB(t)]). (3.14)

Now we examine the required approximations that lead us to the GKSL master equation.

To commence, we solve for the density matrix with all the operators defined in their interaction

picture using Eq. 3.10 as,

ρSB(t) = ρSB(t0)− i

∫ t

t0

ds[HI(s), ρSB(s)]. (3.15)

Substituting Eq. 3.15 into the von-Neumann equation and tracing over the environment with

the assumption that TrB([HI(t), ρSE(t0)]) = 0, we get,

d

dt
ρS(t) = −

∫ t

t0

dsTrB([HI(t), [HI(s), ρSB(s)]]). (3.16)

First approximation to simplify Eq. 3.16 is known as the Born approximation. It states

that assuming a weak coupling between the system and the environment, the density matrix
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of the whole system is separable at all times with the environment state being unchanged

during the entire evolution, ρSB(t) ' ρS(t)⊗ ρB.

Next, we have the first Markov approximation where we neglect all the memory effects

caused by the environment and assume that the reduced density matrix of the system is not

changing over time. To elaborate, this implies that the state of the system is not dependent

on the history of the evolution (ρS(s) ∼ ρS(t)). Implementing these two approximations in

Eq. 3.16 leads us to a simpler master equation,

d

dt
ρS(t) = −

∫ t

t0

dsTrB([HI(t), [HI(s), ρS(t)⊗ ρB]]). (3.17)

This relation is commonly known as the Redfield master equation [137]. Even though that

the Redfield equation is local in time, the dependency of its choice of an initial state at time

t0 prevents it from being considered as a Markovian master equation. Thereby, additional

approximations need to be implemented.

In the case where the time scale of the system over which the system evolves, τS, is

much larger than that of the environment, τS � τB, we can incorporate the second Markov

approximation. To this end we perform a change of variable and replace s with t− s in the

integrand of Eq. 3.17 and change the integration’s upper limit to infinity. This yields the

Markovian master equation in the form of,

d

dt
ρS(t) = −

∫ ∞

0

dsTrB([HI(t), [HI(t), ρS(t)⊗ ρB]]). (3.18)
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The set of the described approximations above is known as the Born-Markov approximation.

Moving on toward deriving the GSKL master equation, one applies a secular approxima-

tion, where we neglect the fast-oscillating terms. We start by introducing the interaction

Hamiltonian in the laboratory frame as,

HI =
∑
α

Aα ⊗Bα, (3.19)

where Aα and Bα are arbitrary Hermitian operators denoting acting on the system and bath.

The system operators can be decomposed using the eigenvectors (|ε〉) of the system

Hamiltonian HS as,

Aα(ω) =
∑

ε′−ε=ω

|ε〉〈ε|Aα|ε′〉〈ε′|. (3.20)

Here, we sum over all energy eigenvalues ε and ε′ with a fixed energy difference of ω. Moreover,

using the completeness of these operators, we can write the interaction Hamiltonian in the

interaction frame as,

HI(t) =
∑
α,ω

e−iωtAα(ω)⊗Bα(t) =
∑
α,ω

eiωtA†
α(ω)⊗B†

α(t). (3.21)
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Now, substituting Eq. 3.21 into the Markovian master equation derived earlier (Eq. 3.18), we

get,

d

dt
ρS(t) =

∫ ∞

0

dsTrB{HI(t− s)ρS(t)ρBHI(t)−HI(t)HI(t− s)ρS(t)ρB}+ h.c.

=
∑
ω,ω′

∑
α,β

ei(ω
′−ω)Γαβ(ω)(Aβ(ω)ρS(t)A

†
α(ω

′)− A†
α(ω

′)Aβ(ω)ρS(t)) + h.c., (3.22)

where h.c. denotes the Hermitian conjugate and Γαβ is the Fourier transform of the environ-

ment’s correlation functions as,

Γαβ =

∫ ∞

0

dseiωs〈B†
α(t)Bβ(t− s)〉, (3.23)

with the correlation function defined as, 〈B†
α(t)Bβ(t− s)〉 = TrB(B†

α(t)Bβ(t− s)ρB).

Due to the weak coupling between the system and the environment and the short time scale

of the environment discussed earlier, we can apply a rotating wave approximation and omit

the non-secular terms (any term proportional to exp [i(ω′ − ω)t] with ω 6= ω′) in Eq. 3.22,

which results in,

d

dt
ρS(t) =

∑
ω

∑
α,β

Γαβ(ω)(Aβ(ω)ρS(t)A
†(ω)− A†

α(ω)Aβ(ω)ρS(t)) + h.c. (3.24)
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Defining γαβ(ω) = Γαβ(ω) + Γ∗
βα(ω) and Sαβ = 1/2i(Γαβ(ω)− Γ∗

βα(ω)), leads to,

d

dt
ρS(t) = −i[HLS, ρS(t)] +

∑
ω

∑
α,β

γαβ(ω)

(
Aβ(ω)ρS(t)A

†
α(ω)−

1

2
{A†

α(ω)Aβ(ω), ρS(t)}
)
,

(3.25)

where the Lamb shift Hamiltonian is given as,

HLS =
∑
ω

∑
α,β

Sαβ(ω)A
†
α(ω)Aβ(ω). (3.26)

Finally, diagonalizing the γαβ(ω) terms in Eq. 3.25 leads us to the long-sought GKSL

master equation given as,

d

dt
ρS(t) = −i[HLS, ρS(t)] +

∑
k

γk(LkρS(t)L
†
k −

1

2
{L†

kLk, ρS(t)}), (3.27)

with Lk denoting the Lindblad jump operators.

The GKSL master equation can be simplified into a single non-Hermitian operator known

as the Liouvillian super-operator, L, written as [138],

d

dt
|ρS(t)〉〉 = L(t)|ρS(t)〉〉, (3.28)

where |·〉〉 represents a super-ket in the Fock-Liouville space.
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The main reason behind rearranging the GKSL equation in this form is to define a

completely-positive trace-preserving (CPTP) map using the Liouvillian super-operator to link

the density matrix at various time steps as, ρS(t) = Λt,t0ρS(t0), where Λt,t0 = exp[L(t− t0)].

Furthermore, the CPTP condition of this map can be also guaranteed if it is divisible such

that,

Λt3,t1 = Λt3,t2Λt2,t1 , (3.29)

with 0 ≤ t1 ≤ t2 ≤ t3. This condition holds for Markovian processes where the system

satisfies the condition, γk ≥ 0 over the entire evolution.

3.1.3 Beyond the Markov approximation

To account for the memory effects in the real-world open systems, we need to generalize the

GKSL master equation (Eq. 3.27). Nakajima and Zwanzig formulated a master equation

that governs the dynamics of such open systems [139, 140]. The memory effects arise once

we move onto the regime where there is a strong coupling between the system and the

environment. In this regime, the Born-Markov approximation is not any longer applicable

and the system reaches a non-Markovian regime with the memory effects relating all the

history of the evolution at each time step. In this section, we take the projection operator

approach to derive the Nakajima-Zwanzig master equation proposed in [141].
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We start the derivation of the non-Markovian master equation by introducing the Hamilto-

nian of the coupled system as,

H = H0 + αHI , (3.30)

where H0 and HI are the free evolution and the interaction Hamiltonians with α representing

a dimensionless expansion parameter. The equation of motion in the interaction picture is

given as,

d

dt
ρ(t) = −iα[HI(t), ρ(t)] = αL(t)ρ(t). (3.31)

We define two projection super-operators in the form of,

Pρ = TrB(ρ)⊗ ρB, (3.32)

Qρ = ρ− Pρ. (3.33)

Here, projection Pρ, gives all the necessary information required to reconstruct the reduced

density matrix of the system, ρS. On the other hand, the complementary super-operator,

Q acts on the irrelevant part of the density matrix, meaning that the result is not useful in

reconstructing ρS.
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Following the definition of these super-operators, we can immediately see their properties,

P +Q = I,

P2 = P ,

Q2 = Q,

PQ = QP = 0. (3.34)

Applying the super-operator projectors (Eq. 3.32 and 3.33) to the von-Neumann equation

(Eq. 3.31) and inserting the identity operator between the Liouvillian super-operator and the

density matrix on the right hand side, leads to a coupled differential equation system,

d

dt
Pρ(t) = αPL(t)Pρ(t) + αPL(t)Qρ(t), (3.35)

d

dt
Qρ(t) = αQL(t)Pρ(t) + αQL(t)Qρ(t). (3.36)

To arrive at the master equation, we need to solve Equation 3.36 and insert the solution to

3.35. The solution then is given as,

Qρ(t) = G(t, t0)Qρ(t0) + α

∫ t

t0

dsG(t, s)QL(s)Pρ(s), (3.37)

where the propagator is defined as,

G(t, s) = τ exp
[
α

∫ t

s

ds′QL(s′)
]
, (3.38)
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where τ is the time-ordering operator.

At last, inserting Eq. 3.37 into 3.35 leads us to the Nakajima-Zwanzig equation,

d

dt
Pρ(t) = αPL(t)G(t, t0)Q(t0)ρ(t0) + αPL(t)Pρ(t)

+ α2

∫ t

t0

dsPL(t)G(t, s)QL(s)Pρ(s). (3.39)

Next, we define the memory kernel super-operator as,

K(t, s) = α2PL(t)G(t, s)QL(s)P , (3.40)

and rearrange the terms in Equation 3.39 we get,

d

dt
Pρ(t) = αPL(t)Pρ(t) +

∫ t

t0

dsK(t, s)Pρ(s) + αPL(t)G(t, t0)Q(t0)ρ(t0). (3.41)

The first term in Eq. 3.41, gives rise to the Markovian master equation derived in the previous

section. More interestingly, this equation explains the memory effects of the system given by

the second term consisting of the memory kernel super-operator integrated over the entire

evolution. This is the essence behind non-Markovian open system dynamics where the current

state of the system is dependent on the entire history of the evolution. Finally, the last term

denotes an inhomogeneous term dependent on the initial condition at t0.

It is easy to see that, under the assumption of having a separable initial state, ρ(t0) =

ρS(t0) ⊗ ρB, the inhomogeneous term (PL(t)G(t, t0)Q(t0)ρ(t0)) vanishes as Qρ(t0) = 0.
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In addition to this assumption, if we replace the memory kernel with a delta function,

K(t, s) ∼ δ(t− s), we can recover the Markovian master equation (Eq. 3.28) independent of

the history of the system.

In order to reconstruct the general master equation (Eq. 3.41) of an open system, first we

need to utilize quantum process tomography (QPT) [142] to find the quantum dynamical

maps for each time step. The transfer tensors can then be constructed between any two

arbitrary time steps using the calculated dynamical maps [143]. Finally, all the terms in

Eq. 3.41 can be written in terms of the transfer tensors with the approximation of large

number of time steps [144].

3.2 Measures of non-Markovianity

The memory effects of an open system can be quantified by examining the evolution of

the system. Thereby, measuring the non-Markovianity of a system is typically achieved by

either studying the distinguishability of two distinct initial states over time or by examining

the evolution of an initially entangled state in the presence of the system and environment

interactions. This section discusses both of these methods in details as well as reviewing the

common entanglement measures to quantify the separability of a density matrix.

3.2.1 Distinguishability

Proposed by Breuer et. al. in 2009 [30], the trace distance method has been the most common

measure of the non-Markovianity of an open system due to its ease of implementation.
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The main idea behind this method is to study the distinguishability of two separately

prepared states. In the case of having a non-Markovian bath, there will be a back-flow of

information from the environment back to the system due to the memory effects discussed

in Section 3.1.3. This means that unlike the Markovian case where the distinguishability

monotonically decreases over time, the distinguishability of the states can be increased over

time. This phenomenon is used to quantify the non-Markovianity of the system.

To formulate this method, we start by introducing the trace distance of two arbitrary

density matrices, ρ1 and ρ2 as [145],

D(ρ1, ρ2) =
1

2
Tr(|ρ1 − ρ2|), (3.42)

where |ρ| =
√
ρ†ρ. This measure is bounded as 0 ≤ D(ρ1, ρ2) ≤ 1, where the upper bound is

only satisfied when the states are orthogonal with the other bound achieved once the states

are both identical.

Putting the mathematical equation aside, there is an interesting physical intuition behind

the trace distance. Considering two parties, Alice and Bob, where Alice prepares two distinct

states marked as, ρ1 and ρ2, each with equal probabilities of 1/2 and transfers them to Bob

through a noisy quantum channel denoted by a CPTP map, Λt, evolving the initial states

to time t (Fig. 3.1). Now the task for Bob is to measure the states and try to distinguish

between the two. It can be shown that the probability that Bob can distinguish these two is
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given as,

Pd(ρ1, ρ2) =
1

2
(1 +D(Λt(ρ1),Λt(ρ2))). (3.43)

Hence, the trace distance is directly proportional to the distinguishability of the states

and a good measure of the non-Markovianity of an open system. As it can be seen, the

distinguishing probability is equal to one if the two state are orthogonal. Note that one of

the key characteristics of a non-Markovian system is the non-divisibility of its dynamical

maps at various times [30].

Moving onwards with the derivation of the measure, as we mentioned earlier contingent on

the degree of the present memory effects in the system, the distinguishability of the states

may increase. Therefore, the trace distance of two distinct states may increase over time as it

is gone through a quantum channel during the evolution, D(ρ1, ρ2) ≤ D(Λt(ρ1),Λt(ρ2)). To

account for this increase in the distinguishability of the system, we utilize the derivative of

the trace distance and integrate over all the regions that we have a positive derivative. Thus,

the non-Markovianity measure is defined as,

N (Λ) = max
ρ1, ρ2

∫
Ḋ>0

dt
d

dt
D(Λt(ρ1),Λt(ρ2)). (3.44)

with Ḋ denoting the time derivative of the trace distance and we integrate over the two

distinct states that result in the maximum non-Markovianity. In a separate work, Wißmann
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et. al. [146] prove theoretically that choosing two orthogonal initial states ensures the optimal

outcome of this measure.

Alice Bob

Figure 3.1: State distinguishability scheme with two distinct initial states subjected to a
noisy quantum channel [147].

3.2.2 Entanglement

Perhaps the most intriguing and mysterious aspect of the quantum mechanics is entanglement.

This phenomenon implies that the measurement on one of the entangled particles, simultane-

ously affects the state of the other particle no matter how much they are separated from each

other. This has also significant potential in the field of secure quantum telecommunication,

where we try to transmit the data with the least chance that the data can be eavesdropped

during the transmission [148].

67



An entangled state is the one that cannot be written as a separable product state of

multiple states, e.g. for a two-qubit system,

|ψ〉 = |ψ1〉 ⊗ |ψ2〉. (3.45)

On the other hand, an entangled state occurs when we have a superposition of multi-qubit,

correlated states. The simplest form of an entangled state for a two-qubit system is given as,

|ψB〉 =
1√
2
(|01〉+ |10〉). (3.46)

It is easy to see that it is impossible to rewrite this state as a separable state (Eq. 3.45).

This state is maximally entangled and is commonly known as one of the four Bell states.

To elaborate, measuring the first qubit will give us a 50% chance of being in |0〉 or |1〉

state, preventing us from predicting the projected state of the qubit, which is the essence of

entanglement in quantum systems.

Concurrence

To quantify the degree of entanglement, one can choose among various well-known measures

such as, von-Neumann entropy [145], CHSH measure [149], or logarithmic negativity [150]. In

this work, we use a tomographic method suitable for experiments known as the concurrence.

The concurrence C, proposed by Wooters in 1998 [151], is an entanglement measure based on

the tomographically reconstructed density matrix ρ. One main advantage of the concurrence
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over the other measures, like the von-Neumann entropy is that this measure takes into account

the entire subdivisions of the system space. Hence, having a non-zero concurrence assures

the presence of entanglement in the system.

In this formalism, we make use of the spin flip transformation given as,

|ψ̃〉 = σy|ψ∗〉, (3.47)

where |ψ∗〉 represents the complex conjugate of the system state and σy is the Pauli-y operator.

For a two-level system this is identical to the time reversal operation and indeed flips the

state of |ψ〉 [33]. Extending this formalism to a two-qubit system, we can write the flipped

density matrix as,

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy). (3.48)

Defining a new matrix, M = ρρ̃, leads us to the concurrence formulated as,

C(ρ) = max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4} (3.49)

where λ1, ..., λ4 are the eigenvalues of M matrix sorted in the decreasing order. The spin-flip

transformation projects the state into an orthogonal state, hence setting M to zero. However,

an entangled state is invariant under this transformation, which gives rise to a non-zero
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concurrence. This definition bounds the concurrence as, 0 ≤ C ≤ 1, with a maximally

entangled state having a concurrence of one.

Entanglement revival

We introduce a measure for the non-Markovianity of the system based on the evolution

of the entanglement. As known, having a CPTP map does not result in a revival of the

entanglement. Hence, for a Markovian environment the entanglement monotonically decays

over time [152]. However, if we move onto a regime where there is a strong coupling between

the system and the environment, there is a chance that the entanglement can be revived due

to the memory effects induced by the environment discussed in Section 3.1.3.

The main advantage of utilizing entanglement as a probe of the memory in an open system

is that there is no need to have prior knowledge about the dynamics of the system as well as

avoiding an optimization problem, such the trace distance measure introduced in Sec. 3.2.1

where we need to find an optimal set of initial states. This method was first proposed by Rivas

et. al. [31], where they theoretically studied the entanglement evolution of an open system

coupled to a bath of harmonic oscillators. In their proposal, they considered a two-level

system coupled to an ancilla with the system, alone, being coupled to a bath of oscillators.

Figure 3.2(a) shows their proposed scheme with the bath indicated by the golden color. The

main idea is to prepare the system and ancilla in an entangled state at t0 and let the system

evolve by having interactions with the bath.
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The entanglement measure over the entire time evolution of the system is formulated as,

I(E) =

∫ tf

t0

∣∣∣∣dC[ρSB(t)]dt

∣∣∣∣ dt−∆C, (3.50)

where C denotes the concurrence (Eq. 3.49) and ∆C = C[ρSB(t0)] − C[ρSB(tf )]. It is clear

that for a Markovian bath the slope of the entanglement over time is always decreasing over

time, resulting in a zero measure (green curve in Fig. 3.2(b)). However, they showed that by

increasing the coupling between the system and bath, the entanglement can be revived over

time, due to the back-flow of information from the environment (red curve in Fig. 3.2(b)).

Thereby, this measure is a great tool to quantify the non-Markovianity of the system. In

the next chapter, we will discuss an experiment where we utilize this measure to probe the

memory effects of the environment.

Ancilla

System

En
ta
ng

le
m
en

t

Time

(a) (b)

Figure 3.2: (a) A cartoon explaining the scheme behind realizing the non-Markovianity in
an open quantum system. (b) The evolution of an entangled state in the presence of a
(non-)Markovian environment represented by (red) green curve [31].
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Chapter 4

Realizing Non-Markovian Dynamics

in Superconducting Qubit Processors

This chapter discusses in detail the most sophisticated experiment conducted in Murch lab

to date on the realization of an open quantum system with memory. I start with giving an

overview of the project and the motivations behind the study of the memory in open systems.

I will then go over the toolset required to design multi-qubit superconducting circuits to

realize a Hamiltonian of interest in Section 4.2. Section 4.3 covers the basics of microwave

engineering required for setting up cryogenic experiments and after that I will move onto

the two-qubit tomography (Sec. 4.4) and the cross-resonance gate (Sec. 4.5) to entangle two

qubits using an all-microwave gate scheme. At last, I will conclude the chapter by presenting

the results and the future plausible paths for this project in Section 4.6.
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4.1 Retrieval of entanglement

Essentially for any experiment conducted in a laboratory, there is always an inevitable

interaction between the system and its environment. The environment can be the main source

of decoherence properties in the system with its dynamics described by the Lindbaldian master

equation under Born-Markov approximations, as discussed in Section 3.1.2. Nonetheless,

one can take advantage of the environment and utilize it to resolve challenges, such as the

measurement problem, where we use the environment to probe the state of the system.

However, having a strong interaction between the system and environment results in the

violation of the Born-Markov approximations. In this case, the system will experience a

back-flow of information from its environment with its dynamics described by the generalized

master equation (Sec. 3.1.3), which takes into account the impact of the memory in the

environment by linking the current state of the system to all of its precedent history over

time in terms of a memory kernel. This allows us to study exhilarating physical phenomena,

e.g., the state retrieval [153], a better understanding of the temporally correlated noise

in multi-qubit circuits hindering the progress towards achieving a fault-tolerant quantum

computer [28, 154, 155], and the study of the memory kernel [144, 156] merely present in

non-Markovian open systems.

Among various measures of the non-Markovianity ranging from trace distance [30] to

operational approaches [157], the entanglement measure proposed in 2010 by Rivas et. al.

[31] is of great importance due to its direct applications in quantum algorithms, such as

superdense coding. The main goal of this algorithm is to transmit an entangled state between
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two parties using only one qubit. It has been shown that introducing non-Markovian noise

and memory effects improves the efficiency of this algorithm [158, 159]. Expanding on the

entanglement measure scheme, the system is initially entangled to an ancilla qubit and the

system itself is coupled to a bath of harmonic oscillators with the non-Markovian transition

achieved by increasing the coupling rate to the bath. In that regime, one can experience a

retrieval of the entangled state over its course of evolution in time. To elaborate on that,

due to the back-flow of information from the environment, the dissipated information can be

recaptured contingent on having a strong interaction between the system and environment.

Although this phenomenon has been previously explored in the optical platforms [160], the

lack of such experimental study in the rapidly evolving field of the superconducting qubits

has inspired this work.

4.2 Design and simulation of multi-qubit proces-
sors

The first step in realizing non-Markovian dynamics in a real-world experiment is to design

and simulate a superconducting qubit processor backed by the parameters extracted from the

numerical solutions of the desired Hamiltonian. This section starts with covering the basics

of the numerical simulations by introducing the required toolset and moves onto designing

and simulation of the multi-qubit processors.
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4.2.1 Numerical simulations

The simplest approach to check the feasibility of a theory is by numerically solving for the

density matrix evolution of the system using the master equations discussed in Chapter 3 using

conventional numerical ordinary differential equation methods, such as the Runge-Kutta [161]

or take a different route and use a Monte Carlo method where we examine the quantum

trajectories to find a solution to the master equation utilizing the well-known quantum jump

method first introduced in the field of quantum optics [162]. Either way, the solution should

represent the dynamics of the system with the lowest possible cost compared to conducting

the experiment and showcase the results as a benchmark and inception of a complex project.

Recently, there has been a significant rise in the number of packages capable of solving the

dynamics of open quantum systems in the presence of dissipation. Among those, the QuTiP

[163, 164] and HOQST [165] packages have received the most attention. The main advantage

of HOQST is its ability to simulate the dynamics in the presence of various noise models as

well as being based on Julia programming language, which is capable of solving differential

equations about two times faster than python-based packages. In spite of that, QuTiP has

the largest number of users due to the fact that it is based on python where most people

have prior knowledge of the language. Likewise, in our study we utilize the QuTiP package to

examine the dynamics of our system of interest.

As discussed in the previous section, to realize non-Markovian open quantum systems we

need to make use of a quantum processor with three coupled qubits (two coupled pairs) where

the third qubit can be taken into account as the environment of the system qubit (Fig. 4.1).
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The Hamiltonian of such a system with qubits mediated via a co-planar waveguide resonator

is in the form of,

H =
1

2

2∑
i=0

ωiZi + JSA X ⊗X ⊗ I + JSE I ⊗X ⊗X, (4.1)

with JSA and JSE denoting the coupling rate between the system-ancilla and system-

environment qubits and ωi represents the resonant frequency of qubit i.

System Qubit
ω1

Ancilla Qubit
ω2

JSA

Environment Qubit
ω0

JSE

Figure 4.1: Cartoon demonstrating the main idea behind the three-qubit processor design.

Using the mesolve function in the QuTiP package, we can simply extract all the expectation

values required to reconstruct the two-qubit density matrix at each timestep. First, we

initialize the system and ancilla qubits in a Bell state (concurrence = 1) and then look at the

evolution of the entanglement. As shown in Figure 4.2(a, b), the oscillations in concurrence

gets weaker as we increase the detuning between the system and environment qubits for the

simulation parameters assigned as follows: ω1/2π = 4.24 GHz, ω2/2π = 4.5 GHz, JSA/2π =
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1.1 MHz, and JSE/2π = 2 MHz. In addition, the non-Markovianity of the system is calculated

using Equation 3.50. Figure 4.2(c) illustrates the transition from non-Markovian to Markovian

regime by varying the tuning between the system and environment qubits.
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Figure 4.2: Numerical simulation results of the concurrence evolution for system-environment
detunings of (a) 5 MHz and (b) 100 MHz. (c) The non-Markovianity of the system as a
function of the detuning between the system and environment qubits.

4.2.2 Device design

Having all the desired parameters from the numerical simulations allows us to move onto the

next step, where we need to run electromagnetic simulations to determine the actual device

parameters, such as the Josephson junction’s inductance and the capacitance, to bring our

desired Hamiltonian (Eq. 4.1) into life by designing intricate superconducting circuits. I start
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by introducing the theory background on the main simulation tool proposed by Minev et al.

[166] and then discuss the practicality of this theory in building multi-qubit circuits.

Energy-participation ratio

The main challenge in experimentally realizing various Hamiltonians is to have reliable,

efficient, and accurate simulation tools to precede the fabrication steps. The most prominent

simulation tool developed to simulate the multi-qubit complex circuits is known as the

energy-participation ratio (EPR) quantization [166]. The main idea behind this method is

to find the energy ratio of mode m stored in element j denoted pmj. As shown later in this

section, this ratio is the main element in bridging classical and quantum circuit analysis.

To elucidate how EPR works, we can look at a simple example where we have a flux

tunable transmon qubit capacitively coupled to a microwave cavity. The Hamiltonian of such

system can be divided into a linear and nonlinear part as (Hfull = Hlin +Hnl),

Hlin = h̄ωca
†
cac + h̄ωqa

†
qaq, (4.2a)

Hnl = −EJ [cosφJ + φ2
J/2], (4.2b)

φJ = φq(aq + a†q) + φc(ac + a†c), (4.2c)

where ωc and ωq are the cavity and qubit frequencies with ac (a†c) and aq (a†q) being their

annihilation (creation) operators with the junction flux φJ consisting of φc and φq representing

the quantum zero-point fluctuations of junction flux in the cavity and qubit and h̄ denoting
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the reduced Planck’s constant. The ultimate goal of the EPR analysis is to calculate the

unknown parameters ωc, ωq, φc, and φq. The cavity and qubit frequencies can be easily

calculated by using the eigenmode solver of the well-known Ansys HFSS microwave simulation

software, leading to the linear part of the Hamiltonian (Hlin).

In order to resolve the non-linear term (Hnl), we need to calculate φc and φq. These

parameters can be determined by finding the fraction of the stored junction energy (EJ)

to that of each of the modes using the electric and magnetic eigenfield results from the

simulations defined as,

pm =
〈Ψm|12EJφ

2
J |Ψm〉

〈Ψm|12Hlin|Ψm〉
. (4.3)

where |Ψm〉 denotes a coherent state of mode m in the system.

Using the participation ratios extracted from the finite-element simulations, we can easily

extract φc and φq to determine the full Hamiltonian,

φ2
c = pc

h̄ωc

2EJ

, and φ2
q = pq

h̄ωq

2EJ

. (4.4)

However, knowing the participation ratios does not directly allow us to calculate the

coupling rates between distinct elements of the circuit. Therefore, we need to relate these

ratios to parameters used to design real-world experiments. To this end, we can calculate

the cross-Kerr matrix elements to link the participation ratios to more practical parameters,

such as the anharmonicity of the qubit (αq) or the coupling rates. The cross-Kerr matrix
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elements can be derived as a function of the participation ratios in the form of,

χqq = 2αq = p2q
h̄ω2

q

4EJ

, (4.5a)

χqc = pqpc
h̄ωcωq

4EJ

, (4.5b)

where the coupling rate between the qubit and the cavity with the detuning ∆qc can be

written in terms of χqc as,

g =

√
χqc∆qc

(∆qc + αq)

αq

. (4.6)

Finite-element simulations

Now let us consider a simple simulation example with two transmon qubits coupled via a λ/2

co-planar waveguide (CPW) resonator where the goal is to extract all the coupling parameters

as well as the resonant frequencies as the initial step in designing the desired multi-qubit

circuit. In this study, we used the recently developed Qiskit Metal package [167] to both

draw the design and transfer them to Ansys for the EPR simulations using the integrated

pyEPR package [168]. Figure 4.3(a) shows the geometry of the coupled qubits in HFSS. Next,

we can simply simulate the eigenmodes and eigenfields of each component in Ansys and

calculate the energy ratios as discussed above. To start with, we need to define the junctions’

inductance, qubits’ pad geometry dimensions and the length of the CPW resonator which

determines its frequency. We fix the gap (width) of all the CPWs to 6 µm (10 µm) to result
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in an impedance of ∼50 Ω on a 300 µm thick silicon substrate with a dielectric constant of

11.9. Note that the coupling between the qubit and the resonator is inversely proportional to

the detuning of these components (∆ic) given as [169],

J =
g1g2
2

(
1

∆1c

+
1

∆2c

), (4.7)

with gi representing the coupling between qubit i and the mediated resonator determined by

the gap and length of the arm at the end of the resonator.

The results from the EPR quantization method is shown in Fig. 4.3(b). The first output

of the EPR analysis is the resonant frequencies of each component as, ωq1/2π = 4.402 GHz,

ωq2/2π = 4.839 GHz, and ωc/2π = 7.910 GHz. Furthermore, the EPR simulation provides us

with the full cross-Kerr matrix where the diagonal elements represent the anharmonicity of

each component, αq1/2π = 217 MHz and αq2/2π = 139 MHz determined by the dimensions

of the qubit’s ground plane capacitor pads. The off-diagonal elements are defined as the

cross-Kerr components used to calculate the coupling rate between components. Having

χq1,c/2π = 70.4 kHz, we can easily calculate the coupling rate between qubit 1 and the

resonator g1/2π = 68 MHz using Eq. 4.6. Following the same procedure for the second qubit,

we can see that g2/2π = 63 MHz. The last step is to calculate the effective coupling between

the qubits utilizing the (Eq. 4.7), which results in J12/2π = 1.22 MHz. This concludes the

simulations and all the required parameters for the two-qubit coupling case.

In addition to the coupling rates, the readout resonator’s coupling quality factor and

resonant frequency also needs to be calculated to acquire the dispersive shift between the
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(a) (b)
*** Frequencies 01 PT (MHz)
0     4402.199611
1       4839.006939
2       7910.028613
dtype:   �oat64

*** Chi matrix 01 PT (MHz)
  Diag is anharmonicity,
  o� diag is full cross-Kerr.
           217     0.000278        0.0704             
0.000278                139        0.0716
     0.0704          0.0716    1.49e-05

(c)

Figure 4.3: The finite-element simulation results incorporating the EPR quantization. (a) The
transferred geometry from Qiskit Metal shown in Ansys HFSS. (b) The output of the EPR
analysis showing the eigenmode frequencies of each component as well as the full cross-Kerr
matrix. (c) Geometry of the coupled resonator to a feedline to extract the linewidth of the
cavity.

qubit and cavity and to make sure that our qubit is not Purcell limited, meaning that the

coupling is not too strong to reduce the coherence times. The Purcell decay rate of a qubit
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coupled to a single mode of a cavity with linewidth, κ is given as,

ΓPurcell =
g2

∆2
qc
κ. (4.8)

The only parameter left to simulate to get the Purcell decay rate is the cavity linewidth.

To this end, we need to design a λ/4 CPW resonator capacitively coupled to a transmission

feedline and define two lumped-element ports at the ends of the transmission line to look at

the S-parameters in HFSS simulations. After careful meshing of the geometry and finding the

resonance dip in the transmission spectrum, the 3-dB method [170] can be used to acquire

the linewidth. Having the rest of the required parameters from the EPR simulation, we will

be able to calculate the Purcell decay rate. It is noteworthy that to achieve the optimal

readout signal-to-noise ratio, the cavity’s linewidth should ideally be approximately equal to

its dispersive shift, κ ' 2χ.

In a similar manner, we can calculate the Purcell decay rate of the drive lines by looking

at the reflection spectrum of the drive line port and extract the coupling rate using the 3-dB

method and use Equation 4.8. Typically, a gap of 30 to 40 µm between the end of the drive

line and the qubit’s capacitor pad results in Purcell-limited relaxation times of about 200 µs

with reasonable single-qubit gate times of ∼50 ns.

As for the fast flux lines, we need to calculate the mutual inductance between the SQUID

loop and the flux line. We utilize AWR Microwave Office to simulate the Z parameters and

then converting that to the mutual inductance as, M = d imag(Z12)/dω with Z12 derived

from the S parameters discussed in Section 4.4 of [171] (Fig. 4.4(a)). The imaginary part
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of Z12 is shown in Fig. 4.4(b) as a function of the frequency after setting the inductance of

the junctions to 16 nH. Using its slope we can solve for the mutual inductance resulting

in, M ≈ 3.7 pH. To get the required current for a flux quanta we have, i = Φ0/M , where

Φ0 = h/2e is the magnetic flux quanta with h and e being the Plank’s constant and the

electron charge, respectively. From this we get i ≈ 560 µA. Take heed that having larger

mutual inductance decreases the amount of current needed for a flux quanta with the caveat

of the qubit being more susceptible to flux noise due to the stronger coupling. Hence, in the

field of superconducting circuits the mutual inductance is typically set to a few picoHenries.

(a) (b)

8 μm 3.5 4.5 5.5 6.5

Frequency (GHz)

Im
ag

(Z
12

)

0.01

0.015

0.02

0.025

Figure 4.4: Simulating the mutual inductance of the fast flux line. (a) The geometry shown in
AWR microwave office. (b) Simulation result demonstrating a linear slope for the imaginary
part of Z12 as a function of frequency used to calculate the mutual inductance.

Figure 4.5 depicts the final layout used for the fabrication of the desired three-qubit device,

named “Muninn”. The simulated parameters for the device used in this project are given

in Table 4.1. To elaborate, the readout resonator frequencies are separated by ∼150 MHz,

compatible with the bandwidth of the parametric amplifier used in the experimental setup
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and to avoid any unintentional coupling between them. The qubit frequencies were chosen

in such a way that the system qubit can be brought close to the ancilla qubit’s resonance

frequency, hence we can apply two-qubit entangling gates required for this project with

reasonable gate times as described in Section 4.5.

x position (mm)

y 
po

si
tio

n 
(m

m
)

Q2 Q1 Q0

Figure 4.5: Color coded layout of Muninn in Qiskit Metal to demonstrate the drive lines in
yellow, fast flux lines in magenta, and feedline ports in blue.
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ωq/2π (GHz) |α|/2π (MHz) χqc/2π (kHz) g1/2π (MHz) g2/2π (MHz) ωc/2π (GHz) κ/2π (kHz)

Q0 5.6 180 200 - 89 7.47 200
Q1 5.1 175 210 60 87 7.3 200
Q2 4.6 195 210 66 - 7.15 200

Table 4.1: Simulated parameters used to fabricate Muninn.

4.3 Experimental methods

This section covers the methods required to fabricate a qubit processor, how to set up the

experiment inside a cryostat, and the techniques used to amplify the input signal for quantum

measurements.

4.3.1 Superconducting qubit fabrication

The immediate next step in setting up our experiment after designing a simulated layout, is

to fabricate the superconducting circuit using conventional nano-fabrication techniques. To

fabricate a multi-qubit processor, we first need to make the resonators using the subtractive

method explained in Section 2.4.2 and then patch the Josephson junctions (JJ) in a separate

layer after removing the native surface oxide from the base metal layer using ion milling.

Junctions are fabricated based on the Niemeyer-Dolan-bridge method [172, 173], where we

start with spin coating a bi-layer stack of MMA-EL13 electron-beam resist as the top layer

and ZEP-520A as the top layer on a 2-inch intrinsic silicon wafer with resistivity > 8 kΩ · cm

at a spinning rate of 3000 rpm for 60 s for both layers after removing the organics and the

native surface oxide from the substrate. The substrate is then soft baked after each spin to
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remove the moisture from the spun resists at 180 and 200 ◦C. This results in resist thicknesses

of 450 and 280 nm, respectively.

Next, the resist needs to be exposed with electron beams to make the desired mask

with Dolan-bridge structures. Figure 4.6(a) shows the layout of a typical three-dimensional

transmon where each color represents a separate layer written with a different exposure time.

At the heart of our design, we have the JJs with features as small as 200 nm, making them

the most sensitive structures in the whole process. Due to their subtleties and to prevent the

bridge from being over-exposed, these features are typically exposed using a low beam current

(50 pA) with an area dose of ∼300 µC/cm2. The capacitor pads (blue layer in Fig. 4.6(a)), on

the other hand, are exposed with a relatively higher current, 4 nA with the same amount of

area dose as the previous layer to expedite the exposure, which determine the anharmonicity

of the qubit.

The mask is then developed in two separate solvents. First, we develop the top layer

(ZEP-520A) using ZED-N50 developer at 0 ◦C for one minute. Immediately after that, we

resolve the required undercut to form the Dolan-bridge by immersing the wafer in a solution

of MIBK/IPA with ratios of 3:1 for 150 s to make sure we form enough undercut to realize

the bridge. Finally, we clean the wafer in pure IPA for 15 s before blow drying the sample

with nitrogen.

After development, we need to clean the sample for 30 s under oxygen plasma at 100 W

of power to remove the residual resists on the substrate. Then the sample is ready for

metallization in the electron-beam evaporator. To form the junction, we utilize a double-angle
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evaporation technique to deposit aluminum with thicknesses of 30 and 60 nm mediated by

an oxidation step in between to form the dielectric layer. The overlap size can easily be

calculated using simple two-dimensional geometry analysis given as (Fig. 4.6(b)),

s′ = 2 tan(θ)(H − s

2
tan(90− θ)), (4.9)

where H is the thickness of the bottom-layer resist with s representing the designed bridge

width of the junction and θ denoting the evaporation angle in degrees.

Now we simply need to remove the extra aluminum from the wafer by immersing the sample

in the remover-PG solution heated at 70 ◦C for two to three hours. Figure 4.6(c) shows the

scanning electron microscopy image of a fabricated transmon qubit with JJ dimensions of

120 × 200 nm. Next, we probe the resistance of the junction at room temperature, which

is inversely proportional to the critical current across the junction below the aluminum’s

transition temperature, given by the Ambegaokar-Baratoff relation [174],

Ic = π
∆

2eR
, (4.10)

with ∆ being the superconducting gap of the aluminum and R denoting the measured

resistance of the junction at room temperature. The first transition frequency of the qubit

can be calculated as [8], h̄ω01 =
√
8EJEC − EC, where EC denoted the capacitive energy

(anharmonicity) of the device determined by the dimensions of the capacitor pads and EJ is

the energy stored in the junction as, EJ = h̄IC/2e. Typically, for a qubit with a reasonable
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frequency between 4 to 5 GHz with a designed EC = 250 MHz, we need to achieve a critical

current ∼10 nA. This concludes the fabrication techniques required to make multi-qubit

processors and now we can look at the cryogentic microwave setup needed to measure such

devices.

(a) (b)

2 μm100 μm Substrate

s
ZEP-520A

s’

H

θ θ

(c)

2 μm

Figure 4.6: Fabrication of superconducting qubits. (a) The prepared layout showing different
layers with blue indicating the capacitor pads and the red layer representing the junction.
(b) The geometry analysis used to calculate the junction overlap. (c) The scanning electron
microscopy image of a fabricated qubit with junctions marked with red dashed lines.
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4.3.2 Cryogenic setup and preliminary characterizations

Harnessing quantum effects requires the suppression of the thermal fluctuations as much as

possible. Therefore, the circuits need to be cooled down in dilution refrigerators with base

temperatures of < 15 mK. In addition, the devices need to be probed with very low power in

order to prevent heating and dephasing mechanisms. As the first order treatment to setup

the experiment, the device needs to be isolated from the environment around them. The

device is packaged in a copper box and surrounded by an additional copper and aluminum

can as well as a cryoperm shielding to protect the device from the infrared radiations and

external magnetic fields. The device is further thermalized to the mixing chamber stage via

a copper plate as well as all the coaxial lines at each stage via microwave attenuators.

Moving onto the microwave setup in the fridge, we utilize microwave attenuators to

reduce the input power on the device as well as to mitigate the microwave noise. Figure 4.7

demonstrates the complete wiring of the cryogenic setup of the experiment. For the fast flux

lines (colored in magenta), we used a total of 40 dB attenuation as well as 300 MHz low-pass

filters (MiniCircuits 300 VLFX) to suppress the high-frequency noise with a bias-tee at the

top of the fridge to apply a DC current to tune the frequency of the qubits. Due to the

stronger coupling of the drive lines, we added 60 and 70 dB of attenuation for drive lines 1

and 2, respectively. This arrangement of the attenuators allows us to achieve Rabi oscillations

as fast as 20 MHz. In addition, we installed 7.2 GHz low-pass filters (MiniCircuits 7200+

VLFX) to mitigate the high-frequency noise. Finally, for the readout input line we added

70 dB of attenuation with a K&L low-pass filter at 8 GHz to ensure the low noise level. Note
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that, an eccosorb infrared filter was installed for every single microwave line inside the copper

shielding with > 10 GHz cutoff frequencies to absorb the infrared radiation.
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Figure 4.7: Cryogenic microwave setup of Muninn showing the microwave components at
each stage.
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To amplify the output signal, we make use of a high-electron-mobility transistor (HEMT)

low-noise amplifier at the 4K stage and a travelling-wave parametric amplifier (TWPA) at

milliKelvin temperatures with gains of about 40 dB and 20 dB, respectively. The noise

temperature of the amplifier is proportional to its physical temperature, which makes it

necessary to have the amplifiers at cold stages to achieve single-shot quantum state readout

[175]. The TWPA used in this experiment is based on the SNAIL architecture resulting in

reversed Kerr phase matching [176] with bandwidths as high as 4 GHz and noise temperatures

of about 300 mK. The other advantage of this type of TWPA is that it can be pumped at

frequencies ∼2 GHz away from the range of interest through a directional coupler, which

results in minimal interference between the pump and readout signal in the experiment. On

the other hand, due to the strong pump power, we install two cryogenic circulators both

before and after the TWPA to further suppress any leakage that might hurt the readout

readout signal.

To characterize the gain of the TWPA, we look at the transmission through the feedline

of the device using a vector-network analyzer and compare the level with the TWPA pump

being on and off. Figure 4.8 demonstrates the typical gain of the TWPA pumped at 9.8 GHz

and operated at half of the flux-quanta showing an average gain of 20 dB over the desired

range covering the resonant frequency our readout resonators.

We utilize conventional spectroscopy methods to characterize the frequency of the devices

(reported at zero flux) and their corresponding dispersive shifts and the linewidths of the

cavities [38]. We achieved an accuracy of 90% between the simulation and the measurement
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values, as shown in Table 4.2, proving the efficacy of the simulation methods and the precision

of the fabrication techniques. Section 1.2.4 includes more details on the room temperature

setup.
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Figure 4.8: Optimal gain profile of the TWPA after carefully optimizing the pump frequency,
power, and the flux bias.

ωq/2π (GHz) |α|/2π (MHz) χqc/2π (kHz) ωc/2π (GHz) κ/2π (kHz)

Q0 5.4 150 260 7.21 170
Q1 4.6 180 250 7.09 206
Q2 4.2 212 230 6.94 270

Table 4.2: Muninn measured parameters showing great accuracy compared to the simulations.
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4.4 State tomography

To reconstruct the density matrix of a system one needs to master the tomography techniques.

In this section, I will introduce the basics of the state tomography by starting with single-

qubit tomography as the simplest case followed by an extension of the methods to two-qubit

systems.

4.4.1 Single-qubit state tomography

For a single qubit, the density matrix has 4 components, meaning that a minimum of

three measurements are needed to reconstruct the full matrix after taking into account

the Hermiticity and trace-preserving nature of a physical density matrix. Since in our

measurement scheme, we are only capable of measuring along the z axis, two additional

rotations (in and out of phase π/2 pulses) must be applied immediately before the readout

pulse to project the other two axes, populations to Z in order to measure the 〈x〉 and 〈y〉

expectation values as shown in Figure 4.9(a). For an arbitrary state in the {|0〉, |1〉} basis,

(|ψ〉 = a|0〉+ b|1〉) the normalized expectation value is defined as,

〈z〉 = 〈ψ|σz|ψ〉
〈ψ|ψ〉

=
1

|a|2 + |b|2

(
a∗ b∗

)1 0

0 −1


a
b


=

|a|2 − |b|2

|a|2 + |b|2
. (4.11)
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It is easy to show that |a|2 = pr(z)(0)/(pr(z)(0) + pr(z)(1)) and |b|2 = pr(z)(1)/(pr(z)(0) +

pr(z)(1)), representing the probabilities of measuring the system in the ground and excited

state, where superscript (z) denotes the measurement axis. The expectation value can now be

rewritten as,

〈z〉 = pr(z)(0)− pr(z)(1)
pr(z)(0) + pr(z)(1)

. (4.12)

The same approach can be used to calculate the rest of the expectation values,

〈x〉 = pr(x)(0)− pr(x)(1)
pr(x)(0) + pr(x)(1)

, (4.13)

〈y〉 = pr(y)(0)− pr(y)(1)
pr(y)(0) + pr(y)(1)

. (4.14)

Now that we have all the required measurement results, the density matrix of our single-

qubit system is simply calculated as,

ρ =
1

2
(I + 〈x〉σx + 〈y〉σy + 〈z〉σz), (4.15)

where σx, σy, and σz are the Pauli matrices with I denoting the 2×2 identity matrix.

Experimentally, one calibrates the tomography pulses by looking at all of the three

tomography components after applying a time-varying Rabi drive with a constant amplitude

on the qubit (Fig. 4.9(b)). After carefully adjusting the resonance frequency of the qubit

using a typical Ramsey measurement [177], the time and amplitude of the tomography pulses
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as well as the orthogonality of the IQ mixers [178], the result should indicate oscillations

on two of the components and a flat line for the third component as shown in Figure 4.10,

indicating that the rotation occurs in either XZ or Y Z plane on the Bloch sphere contingent

on the rotational axis of the Rabi drive.
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Figure 4.9: Single-qubit tomography pulses for (a) full state density matrix construction and
(b) calibration utilizing a Rabi drive.

4.4.2 Two-qubit state tomography

In the more complicated case of two qubits, the density matrix (ρ) consists of 16 components.

Similar to the single-qubit case, the Hermiticity and trace-preserving characteristics of ρ
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Figure 4.10: Calibrated tomography pulses for a Rabi drive along (a) X and (b) Y axis.

basically reduce the number of the required measurements to extract all the components

of ρ. Conventionally, 30 distinct measurements are needed to find the components of the

density matrix [179, 180] for the joint readout scheme, where the qubits share a readout

resonator. However, since we have separate readout resonators for each qubit, we can simply

elicit all the components by performing only 9 measurements (Table 4.3) after implementing

the simultaneous readout scheme described in Section 1.2.4 for all the nine tomography pulses

(Fig. 4.11).

As an example, measuring both qubits along Z yields in 〈IZ〉, 〈ZI〉, and 〈ZZ〉 (excluding

the trivial 〈II〉). Using the analogy in Equation 4.12 for an arbitrary state in {00, 01, 10, 11}

basis (|ψ〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉), the normalized expectation value 〈IZ〉, is given as,

〈IZ〉 = 〈ψ|I ⊗ σz|ψ〉
〈ψ|ψ〉

=
|a|2 − |b|2 + |c|2 − |d|2

|a|2 + |b|2 + |c|2 + |d|2

=
pr(z)(00)− pr(z)(01) + pr(z)(10)− pr(z)(11)
pr(z)(00) + pr(z)(01) + pr(z)(10) + pr(z)(11)

, (4.16)
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Rotation Measurement operator Expectation values

R
π/2
Y ⊗R

π/2
Y XX 〈IX〉, 〈XI〉, 〈XX〉

R
π/2
Y ⊗R

−π/2
X XY 〈IY 〉, 〈XI〉, 〈XY 〉

R
π/2
Y ⊗ I XZ 〈IZ〉, 〈XI〉, 〈XZ〉

R
−π/2
X ⊗R

π/2
Y Y X 〈IX〉, 〈Y I〉, 〈Y X〉

R
−π/2
X ⊗R

−π/2
X Y Y 〈IY 〉, 〈Y I〉, 〈Y Y 〉

R
−π/2
X ⊗ I Y Z 〈IZ〉, 〈Y I〉, 〈Y Z〉
I ⊗R

π/2
Y ZX 〈IX〉, 〈ZI〉, 〈ZX〉

I ⊗R
−π/2
X ZY 〈IY 〉, 〈ZI〉, 〈ZY 〉

I ⊗ I ZZ 〈IZ〉, 〈ZI〉, 〈ZZ〉

Table 4.3: Two-qubit tomography measurement operators and their corresponding 16 expec-
tation values.

where pr(z)(00) (pr(z)(11)) is the joint probability of finding both qubits in the ground (excited)

state measured along the Z axis. Additionally, pr(z)(01) (pr(z)(10)) is the probability of finding

the first qubit in the ground (excited) and the second qubit in the excited (ground) state.

Similarly, we can write the other two expectation values as,

〈ZI〉 = 〈ψ|σz ⊗ I|ψ〉
〈ψ|ψ〉

=
|a|2 + |b|2 − |c|2 − |d|2

|a|2 + |b|2 + |c|2 + |d|2

=
pr(z)(00) + pr(z)(01)− pr(z)(10)− pr(z)(11)
pr(z)(00) + pr(z)(01) + pr(z)(10) + pr(z)(11)

, (4.17)

〈ZZ〉 = 〈ψ|σz ⊗ σz|ψ〉
〈ψ|ψ〉

=
|a|2 − |b|2 − |c|2 + |d|2

|a|2 + |b|2 + |c|2 + |d|2

=
pr(z)(00)− pr(z)(01)− pr(z)(10) + pr(z)(11)
pr(z)(00) + pr(z)(01) + pr(z)(10) + pr(z)(11)

. (4.18)

The remaining set of expectation values can be calculated in a similar manner after applying

the tomogrpahy pre-rotation pulses. Having all the 16 expectation values leaves us in a
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Figure 4.11: Two-qubit tomography sequence utilized to reconstruct the full density matrix.

position to utilize a least-square maximum likelihood estimation [181] to construct the density

matrix. To this end, we define a lower-triangular matrix as,

T =



t1 0 0 0

t5 + it6 t2 0 0

t7 + it8 t9 + it10 t3 0

t11 + it12 t13 + it14 t15 + it16 t4


, (4.19)
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where the density matrix can be written as ρ = T †T

Tr(T †T )
, where Tr(·) is the trace over the

entire two-qubit system state space and † denotes the conjugate transpose of a matrix. The

invertibility of T assures the Hermiticity of ρ as well as its trace-normalization.

To efficiently calculate the density matrix, we incorporate the least_squares function

under the scipy.optimize package [182] with the minimization vector in the form of,

Lk =
(
Tr(M̂k ρ)− pk

)2

. (4.20)

Here, M̂k represents the measurement operators with pk being the outcome of each measure-

ment and k runs over all the 16 measurement values. To minimize L, we vary ~t (a real vector

consisted of the T matrix components) until we have the least value for the minimization

function and we take that as the optimum value for our density matrix. To clarify the relation

between the elements in the T matrix (Eq. 4.19) and the measurement operators, the first

term of Eq. 4.20 is given in Table. 4.4 for each measurement operator. Given the complexity

of the expectation values, this problem is most efficiently solved by an optimization algorithm

mentioned above utilizing all the 16 expectation values.
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Measurement operator
M̂ Tr(M̂ T †T )/2

XX t3t9 + t4t11 + t13t15 + t14t16

XY t4t12 − t3t10 + t13t16 − t14t15

XZ t3t7 − t4t13 + t12t16 + t11t15

Y X t4t12 + t3t10 − t13t16 + t14t15

Y Y t3t9 − t4t11 + t13t15 + t14t16

Y Z t3t8 − t4t14 − t11t16 + t12t15

ZX t7t9 + t8t10 + t2t5 − t4t15 + t14t12 + t11t13

ZY t8t9 + t2t6 − t7t10 − t4t16 − t11t14 + t12t13

ZZ
t21 − t22 − t23 + t24 + t25 + t26 + t27 + t28

−t29 − t210 + t211 + t212 − t213 − t214 − t215 − t216

Table 4.4: Expectation terms used to reconstruct the full density matrix with an optimization
problem.

In summary, here are the steps required to reconstruct the full two-qubit density matrix:

1. Perform nine simultaneous measurements and store all the 16 expectation values as

listed in Table 4.3. Note that some expectation values are measured more than once.

In that case, the average of all the same expectation values should be used for the

following steps.

2. Define an arbitrary lower-triangular matrix (Eq. 4.19), write the density matrix in

terms of that, and set up the minimization function (Eq. 4.20) using the measurement

results, pk, from the previous step. This is to ensure that the reconstructed density

matrix is trace-preserving and positive.

3. Employ an optimization algorithm to optimize the minimization function and determine

the desired T matrix elements. The imaginary and real parts of the L need to be
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optimized simultaneously for all the measurements. Hence, summing up the loss

functions over all the measurements is the most efficient approach, L =
∑

k Lk.

4. Finally, reconstruct the two-qubit density matrix using the calculated T matrix as,

ρ = T †T/Tr(T †T ).

The simplest way to check the feasibility of this method is to look at the tomography

results after preparing the qubits in product states. Figure 4.12 demostrates the reconstructed

density matrix for four distinct separable initial states with an average fidelity of 84%. In

the next section, we will further check the efficacy of this method by initializing a Bell state

for our system and use the above-mentioned technique to reconstruct the mixed state.
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Figure 4.12: Real and imaginary parts of the reconstructed two-qubit density matrices for
initially prepared product states (a) |x+〉 ⊗ |x+〉, (b) |x−〉 ⊗ |x−〉, (c) |y+〉 ⊗ |y+〉, and (d)
|y−〉 ⊗ |y−〉.
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4.5 Cross-resonance gate

Among various two-qubit entangling gates, the cross-resonance gate is of the most common

entangling schemes utilized due to its high fidelity and ease of implementation. The cross-

resonance gate was first demonstrated experimentally in 2011 [183]. This section will treat

the theory background behind this entangling gate, and discuss the details on tuning the

gate parameters in experiment.

4.5.1 Theory background

To start with, the Hamiltonian of a two-qubit system with XX coupling in the rotating

frame with qubit resonance frequencies, ω1,2 is in the form of,

H/h̄ =
1

2
ω1ZI +

1

2
ω2IZ + JXX, (4.21)

where J is the residual qubit-qubit coupling rate. For qubits coupled via resonators, is given

as,

J =
g1g2
2

(
1

∆1

+
1

∆2

), (4.22)

with ∆i denoting the detuning of qubit i from the coupling resonator frequency ωr and gi is

the coupling rate between qubit i and the resonator.

The system Hamiltonian (Eq. 4.21) can be diagonalized by having two new sets of qubit

frequencies, ω̃1 = ω1 + J/∆12 and ω̃2 = ω2 − J/∆12, where ∆12 = ω1 − ω2 is the qubit-qubit
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detuning. Hence, in the cross-resonance (CR) scheme, control qubit is driven at the frequency

of the target qubit ωd ' ω̃t (Fig. 4.13(a)). This drive introduces a rotation on the target

qubit with a frequency depending on the state of the control qubit, which is the main element

behind the controlled-NOT (CNOT) gate in qubit processors to entangle and manipulate the

interactions between two neighboring qubits.

We can write the Hamiltonian for such a drive with an amplitude of A(t) on the control

qubit as,

HD/h̄ = A(t) cos (ω̃2t)(ηXI − µZX +m12IX). (4.23)

The first term in Eq. 4.23 represents the Stark shift due to the off-resonant driving of the

control qubit with rate η, m12 is a scalar denoting the spurious electromagnetic crosstalk

between the qubits and µ is our desired ZX coupling rate given as,

µ =
J

∆12

α1

∆12 + α1

, (4.24)

where α1 is the anharmonicity of the target qubit.

It has been shown previously that having all the additional terms in Equation 4.23 does

not result in a degraded ZX coupling as these terms commute [184]. The only downside of

the CR gate is the presence of an always-on ZZ coupling, resulting in a dephasing of the

system’s evolution. To circumvent this problem, one can try to carefully choose the coupling

parameters of the system during the design and simulation phase. The ZZ interaction
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strength in a two-qubit system is in the form of,

ZZ = 2J2 α0 + α1

(∆12 + α0)(∆12 − α1)
. (4.25)

To illuminate the basic concepts behind the CR gate, one can look at an analogy with a

classical system where the qubits are replaced by the classical oscillators [185] (Fig. 4.13(b)).

In this case, since the drive frequency is still in resonance with the target qubit, it will still

apply oscillations due to the coupling of the two qubits with a rate g. However, for the

control qubit, it will only produce a very small forced oscillations. Therefore, applying a

drive to the control qubit with target qubit’s resonance frequency results in oscillation in the

target qubit, demonstrating the main mechanism behind the CR gate.

Control Qubit

J

ωc

Target Qubit
ωt

ωd  ≈ ωt

(a) (b)

J

ωc ωt

ωd  ≈ ωt

Figure 4.13: Cross-resonance gate explained with cartoons. (a) The basic mechanism behind
the CR gate in qubits processors. (b) Utilizing coupled classical oscillators to illuminate the
concepts behind the CR gate.
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4.5.2 Experimental realization

Now that we have a sense of the theory behind the CR gate, we can look at the experimental

protocols needed to tune up the gate. The first step is to bring the qubit frequencies closer

together to get higher ZX coupling, therefore a shorter gate time according to Equation. 4.24.

The maximum coupling between the qubits is set by the designed coupling between the qubits

at resonance and that can be achieved by adjusting the detuning between the qubits and

the drive amplitude. Typically, a detuning of ∼80 MHz with respect to the other qubit is

chosen to both result in a reasonable gate time and a low ZZ interaction strength [186],

which is inversely proportional to the qubits’ detuning (Eq. 4.25). After adjusting the qubits’

detuning to a certain value, we need to apply a microwave signal with the frequency of the

target qubit to the control with the control qubit. Next, we can look at the Rabi oscillations

of the target qubit vs the CR gate amplitude and duration both with having the control

qubit in both its ground and excited state. Figure 4.14 depicts the pulse sequences required

to conduct such an experiment. Extracting the frequency of the Rabi oscillations on the

target qubit with and without the π-pulse for each drive amplitude will allow us to calculate

the effective CR interaction rate as,

Jeff/2π =
fπ

Rabi − fRabi

2
. (4.26)

From the fitting of the Rabi oscillations depicted in Figure 4.15 for a drive amplitude of

0.72 V, we can extract an effective coupling rate of Jeff/2π ∼ 280 kHz, which corresponds to
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Figure 4.14: Pulse sequences used to calibrate the CR gate time with the control qubit
initialized in the (a) ground or (b) excited state.

a gate time of tg = 2π/2Jeff ∼ 1.8 µs. Note that the amplitude of the CR gate should also be

adjusted such that the contrast of the two curves shown in Fig. 4.15 is optimal at the desired

gate time.

The immediate experiment that follows is to entangle the qubits and characterize the

concurrence (Eq. 3.49) as a function of the CR gate time to achieve the largest concurrence

value possible. In order to entangle the qubits, first we initialize the control qubit in a

superposition state (|x+〉), immediately apply the CR gate and run two-qubit tomography
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Figure 4.15: Time-varying Rabi oscillations on the target qubit after driving the control qubit
using target’s resonance frequency. The dashed line indicates the approximate required gate
time to realize the CNOT gate.

(Sec. 4.4.2) as shown in Fig. 4.16(a). Knowing the density matrix of the two-qubit system

allows us to calculate the concurrence. Now by varying the applied CR gate time we can plot

the concurrence as a function of the gate time in our system (Fig. 4.16(b)). As expected, the

concurrence reaches its maximum for a gate time close to tg calculated above and goes back

down to zero once we move away from the optimal point. Figure 4.16(c) demonstrates the

two-qubit tomography result of a Bell state, |ψ〉 = 1√
2
(|01〉+ |10〉), generated utilizing the

above scheme for the optimal CR gate time (1.76 µs), resulting in a concurrence of 0.75 with

83% of fidelity.
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Figure 4.16: Entanglement scheme using the CR gate. (a) The pulse sequence required to
generate a Bell state. (b) Gate time calibration by examining the concurrence. (c) Two-qubit
tomography of the entangled state after careful gate time/amplitude calibrations.
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4.6 Entanglement Dynamics

Having a calibrated CR gate allows us to explore the dynamics of an entangled state during

a free evolution. To realize such dynamics, we simply need to add a delay time between the

CR gate and the tomography pre-rotation pulses in the sequence shown in Figure 4.16. In

this case, we initially prepare an entangled state, let it evolve over a certain amount of time,

and finally reconstruct the full two-qubit density matrix at each time step and calculate

its concurrence using Equation 3.49. As an initial try, Figure 4.17 shows the evolution of

concurrence over a timespan of 2 µs for a detuning of 670 MHz between the system and the

environment qubits.
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Figure 4.17: The entanglement free evolution over a timespan of 2 µs with a detuning of
670 MHz between the system and environment qubits.
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It is anticipated from the numerical simulations (Sec. 4.2) that having a large detuning be-

tween the system and the environment qubits, prevents us from capturing the non-Markovian

characteristics of the system as shown in Fig. 4.17. The other observation is that measuring

each time step ten times over a two-day averaging time, resulted in large error bars. This

can be attributed to the flux noise present in the system, injected through the fast flux lines

on the device, mainly due to the bad grounding of the electronics and/or the ambient noise

present in the laboratory generated by an external source. As a result of these difficulties,

connecting the flux line of the environment qubit to a current source significantly shifts the

frequency of the system qubit, proving that an extra source of noise has been added to the

system.

The next step for this project is to mitigate the noise in the system by studying its spectrum

and identifying the major contributing factors to this. Immediately after that, we can bring

the environment qubit close to the system qubit and repeat the concurrence evolution to

measure the non-Markovianity of the system and investigate the transition from Markovian to

non-Markovian regimes as a function of the detuning between the two qubits. Moreover, after

realizing a non-Markovian environment, it is a feasible to study the effects of the memory

kernel in the evolution of the system by reconstructing the Nakajima-Zwanzig master equation

using the techniques described in Section 3.1.3.
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