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ABSTRACT OF THE DISSERTATION

Parametric Control and Amplification in Superconducting Quantum Systems: From
Entanglement Probes to PT-Symmetric Architectures
by
Chandrashekhar Rao Gaikwad
Doctor of Philosophy in Physics
Washington University in St.Louis, 2025

Professor Kater W. Murch (Chair)

The precise control, entanglement, and measurement of quantum systems are central
challenges in realizing scalable quantum information processing. This dissertation inves-
tigates how parametric modulation and engineered nonlinearity can be harnessed to both
manipulate and measure superconducting qubits with high fidelity. In one part, controlled
parametric drives are used to generate entanglement between qubit pairs and employ their
joint states as probes of environmental dynamics. This approach enables the exploration of
the non-Markovian nature of quantum environments, revealing how memory effects influence
qubit coherence and energy relaxation. In a separate but conceptually related study, the same
principle of parametric driving is utilized to design and analyze quantum-limited amplifiers
based on three-wave mixing in weakly nonlinear Josephson circuits. An amplifier with a
higher coupling quality factor than conventional JPAs is employed, allowing the two modes
of a parity-time (PT) symmetric dimer to be mapped onto the in-phase (I) and quadrature
(Q) components of the Josephson parametric amplifier. This mapping enables controlled
exploration of non-Hermitian dynamics and mode coalescence within the amplifier’s quadra-

ture space, offering new insights into PT-symmetric behavior and quantum-limited detection.



Collectively, these investigations unify the themes of parametric control, entanglement, and
amplification, advancing the broader understanding of quantum measurement and open-

system dynamics.
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So it goes.

—Kurt Vonnegut, Slaughterhouse-Five



Chapter 1

Introduction

Scalable quantum information processing hinges on three capabilities: coherent control of
quantum degrees of freedom, reliable generation and verification of entanglement, and high-
fidelity measurement near the quantum limit. In superconducting circuits, these capabilities
can be addressed by a single physical resource—parametric coupling enabled by Josephson
nonlinearity. By modulating circuit parameters in time, one activates controlled mixing
processes that exchange energy between modes, tailor effective Hamiltonians, and trans-
duce weak signals with minimal added noise. The central theme of this dissertation is
that parametric mizing provides a unifying mechanism linking entanglement-based probes
of open-system dynamics with quantum-limited amplification, and even opens a route to
explore non-Hermitian (PT-symmetric) physics within measurement hardware.

Parametric interactions arise when a system parameter (frequency, coupling rate, or
phase) is driven near a sum or difference of mode frequencies. In weakly nonlinear Josephson
circuits, such drives realize effective three-wave or four-wave mixing that can be switched on
and off with microwave tones. The same mechanism that mediates exchange-type two-qubit
gates (e.g., iSWAP) can, under different biasing and coupling conditions, produce phase-
sensitive gain that amplifies one quadrature while de-amplifying the other. This shared

origin ties together the preparation of delicate quantum states and their readout at the
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quantum limit, allowing control and measurement to be co-designed rather than treated as
disjoint tasks.

Building on this perspective, the first part of the thesis uses entanglement as a metro-
logical resource to interrogate environmental memory. A pair of superconducting qubits is
entangled via parametric gates and coupled to a third qubit that plays the role of a tunable
environment. By injecting controlled dephasing noise into the environment, we vary its ef-
fective memory time and observe a crossover from non-Markovian to Markovian dynamics
in the evolution of bipartite correlations. At sufficiently high dephasing rates, signatures
consistent with a quantum Zeno regime emerge, in which frequent phase randomization
suppresses environment-induced evolution and restores dynamics approaching those of un-
coupled probes.

The second part focuses on parametric amplification as both a practical tool for mea-
surement and a platform for exploring non-Hermitian physics. We examine design choices—
coupling quality factor, pump configuration, impedance environment, and saturation mechanisms—
that set the achievable gain—bandwidth product, noise temperature, and dynamic range of
Josephson parametric amplifiers. Leveraging these design levers, we then implement an am-
plifier with higher coupling-@) than conventional JPAs and show how the two modes of a
PT-symmetric dimer can be mapped onto the in-phase (I) and quadrature (Q) components
of the device. This mapping enables controlled access to PT-symmetric and PT-broken
regimes, with observable features associated with exceptional points and mode coalescence,

all within the quadrature space of a working measurement device.
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Contributions

This dissertation advances a unified view of parametric mixing as a control-and—measurement
primitive in superconducting circuits: it demonstrates entanglement generation with para-
metrically activated exchange gates under realistic loss and anharmonicity constraints; es-
tablishes an entangled-pair protocol to probe environmental memory and its dephasing-
controlled crossover to Markovian behavior, including quantum-Zeno-like suppression at
high rates; develops a practical design framework for quantum-limited amplification that
clarifies gain—bandwidth-noise-saturation trade-offs; and realizes PT-symmetric dynamics
within a working Josephson parametric amplifier by mapping the dimer’s modes onto 1/Q
quadratures, enabling controlled exploration of exceptional-point physics in a measurement

setting.

Thesis outline

Chapter 2: Foundations of superconducting qubits; intuitive view of anharmonicity; loss

channels and Purcell estimates; parametric iSWAP-type gates for entanglement.

Chapter 3: Entangled-pair probing of a third qubit as a tunable environment; dephasing-
controlled crossover from non-Markovian to Markovian dynamics; high-dephasing quantum-

Zeno signatures.

Chapter 4: Quantum-limited parametric amplification in weakly nonlinear Josephson cir-
cuits; design levers and performance trade-offs for gain, bandwidth, noise, and satura-

tion.

Chapter 5: Implementation of a high coupling-() parametric amplifier that realizes an ef-
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fective PT-symmetric Hamiltonian via I/Q) mapping; observation of exceptional-point

features and implications for quantum-limited detection.

As a whole, the dissertation advances a single throughline: parametric mixing is a versa-
tile control-and—measurement primitive that unifies the preparation of quantum states, the
diagnosis of environmental memory, and the realization of engineered non-Hermitian dynam-
ics. The chapters that follow develop this arc from fundamentals to applications—beginning
with core models and assumptions in Chapter 2, moving to entanglement as a probe of open-
system dynamics in Chapter 3, distilling design trade-offs for quantum-limited amplification
in Chapter 4, and finally demonstrating PT-symmetric behavior within a working JPA in
Chapter 5.



Chapter 2

An Engineer’s Approach to Qubits

Wave-particle duality, superposition, and entanglement are among the most intriguing and
unique properties of quantum mechanics, with no direct classical counterparts. These phe-
nomena, which defy classical intuition, form the foundation of quantum computing. In a
controlled environment, these properties can be harnessed to build a quantum computer, a
revolutionary computational device that leverages the principles of quantum mechanics to
solve problems intractable for classical computers [1]. Quantum computers have been pro-
posed to be powerful tools for simulating quantum systems, optimizing complex processes,
and solving cryptographic problems, all while adhering strictly to the laws of quantum physics
2].

At the heart of a quantum computer lies the qubit (quantum bit), the fundamental
carrier of quantum information. Unlike classical bits, which hold a single value (0 or 1),
qubits can be in superpositions, and—most importantly—many qubits can be entangled,
creating correlations that cannot be split into independent pieces. With n qubits the joint
state lives in a 2"-dimensional Hilbert space. Quantum algorithms set relative phases so
that interference boosts the probability of correct answers and cancels many wrong ones
(as in Shor’s factoring, which achieves an exponential speedup, and Grover’s search, which

achieves a quadratic speedup). Although measurement returns a single outcome, the work
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has already been done in the larger Hilbert space; when a problem’s structure fits this use of
superposition, entanglement, and interference, quantum computers can outperform classical
ones. Quantum computing isn’t just “faster computers.” It’s faster for specific problems
(cryptography, optimization, quantum chemistry, etc.). A qubit is typically realized using an
anharmonic oscillator, a device capable of storing and manipulating measurable quanta of
energy, such as photons or other excitations in superconducting circuits [3]. The anharmonic
nature of these oscillators allows for the creation of discrete energy levels, which can be used
to encode qubits (two-level systems), qutrits (three-level systems), and beyond.

In this chapter, we explore the properties of anharmonic oscillators that underpin qubit
design. We develop both an intuitive and mathematical understanding of qubit anharmonic-

ity and measurement, and we discuss the main mechanisms of qubit decoherence.

2.1 Harmonic and anharmonic resonator

2.1.1 Simple Harmonic Oscillator

A simple and classic example of a harmonic oscillator is a mass attached to a spring connected
to a wall. In such a system, the potential energy is quadratic, and this leads to a special
property: the time period of oscillations is independent of the amplitude. This unique feature
implies that the period of a harmonic oscillator is independent of the stored energy in the
oscillator. An electrical equivalent of the harmonic oscillator is an LC tank circuit, as
shown in Fig. 2.1. The total energy stored in this circuit is the sum of the energy stored in
each element and can be written as:
Q ¢

FLo(6,Q) = 5+ 5 2.)
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Fig. 2.1: LC circuit (inductor L in series with capacitor C) as the electrical analog of
a simple harmonic oscillator. The resonant frequency w = 1/v/LC and char-
acteristic impedance Z = ,/L/C follow directly from the quadratic energy

Q*/(2C) + ¢*/(2L) in Eq. (2.1).

which is the Hamiltonian of a simple harmonic oscillator with frequency
1 L e
w=— Z = c (characteristic impedance). (2.2)

Here, ¢ is the flux associated with the inductor of inductance L, and @) is the charge on the
capacitor of capacitance C'. When treated quantum mechanically, we promote the flux and

charge to operators, and the harmonic oscillator is described by the Hamiltonian:

. QPP
H= m+ 57 (2.3)

where ¢ — gfg and Q) — Q are operators obeying the canonical commutation relation

[0, Q] = ih. (2.4)
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It is convenient to define the zero-point (vacuum) fluctuations

[ h [hZ [hCw [ h
¢zpf = m - 77 szf = T = ﬁ> (25)

which satisfy ¢,pr Q.pr = h/2. Using these scales we introduce the bosonic ladder operators

14 . Q G 1 ¢ . Q
“= 2 (¢zpf o szf) ’ ¢ 2 <¢zpf ' szf) ’ (26)
equivalently,

¢=op(atal), Q=—iQu(a—al). (2.7)

The choice (2.5) with the commutator (2.4) ensures that the ladder operators obey the
canonical bosonic algebra

[a,a'] = 1. (2.8)

To express the Hamiltonian in number-operator form, substitute Eq. (2.7) into Eq. (2.3);

using Cw = 1/Z and w/Z = 1/L and simplifying yields

. 1 1
H=hw (dT& + 5) = hw (ﬁ + §> , (2.9)

where 7 = a'a is the photon-number operator. Thus the quantized LC circuit is exactly a
quantum simple harmonic oscillator with evenly spaced energy levels E,, = hw (n + %) This
property—where the resonator’s frequency remains independent of the number of photons it
contains—is directly analogous to the classical case discussed at the beginning of this section.

However, rather than measuring a single quantum directly, we infer it by detecting a
transition between neighboring energy levels, so a one-quantum gain appears as a resolvable

change in the system’s response. This requires an anharmonic resonator, where the
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resonant frequency depends on the amount of energy stored in it. An anharmonic resonator
can be of two types: (a) a weak nonlinearity leading to nonlinear resonators typically used
to make parametric amplifiers, converters, etc.; (b) a sufficiently strong nonlinearity that
can exhibit a significant frequency shift even when excited with a single photon, making
it possible to measure and control individual quanta of energy and to realize qubits. This
property is crucial for quantum computing and quantum sensing applications.

By analogy, a nonlinear electromagnetic resonator capable of storing a single photon
and exhibiting a frequency shift can mimic the behavior of a hydrogen atom, making it
a suitable candidate for quantum state manipulation and measurement [3]. To make a
harmonic resonator anharmonic, one can introduce a nonlinearity into the inductor, the
capacitor, or both. However, for the device to be useful as a quantum anharmonic resonator,
this nonlinearity must be essentially lossless.

Such a lossless nonlinear element was discovered by Brian D. Josephson in 1962, now
known as the Josephson junction [4], a breakthrough that later earned him the Nobel Prize
in Physics. The Josephson junction has since become the cornerstone of superconducting
quantum circuits, enabling the engineering of highly coherent and controllable quantum

devices; see also the comprehensive perspective in [5].

2.1.2 Josephson junctions and superconducting qubits

A Josephson junction (JJ) is a quantum mechanical element consisting of two supercon-
ductors separated by a thin insulating barrier (typically ~1-3nm thick) [6]. It exhibits
unique properties due to the coherent tunneling of Cooper pairs, leading to the DC and AC
Josephson effects. These junctions form the nonlinear element essential for superconducting

quantum circuits [7]. The DC Josephson effect describes a supercurrent flowing across the

10
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junction without an applied voltage:

I = I.sin(¢), (2.10)

where [ is the supercurrent, I, is the critical current (maximum zero-voltage supercurrent),
and ¢ is the phase difference across the junction [8, 9]. The AC Josephson effect relates a

constant voltage V' to the time evolution of the phase difference:

dp  2e

_ = 2.11
=77 (2.11)

where e is the electron charge. The nonlinear inductance of a JJ arises from the current—phase
relation. For small phase fluctuations (¢ < 1), the junction behaves as a linear inductor

with Josephson inductance:
_h
- 2el.  2rl.)]

L, (2.12)

where &y = h/2e is the magnetic flux quantum. For finite currents (I < I..), the inductance
becomes current-dependent. A simple superconducting qubit can be realized by replacing
the linear inductor in an LC resonator with a Josephson junction (JJ), a nonlinear, lossless
element typically represented by a cross symbol in circuit diagrams (see Fig. 2.2).

A single photon trapped in such a resonator can shift the transition frequencies via
the current-dependent Josephson inductance. The anharmonicity is defined as the difference
between successive transition frequencies (e.g., & = w2 —wp1 ); its magnitude controls spectral

selectivity and strongly impacts readout fidelity by improving the effective signal-to-noise

ratio (SNR) [5].

11
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tB T o X T¢

Fig. 2.2: Replacing the linear inductor with a Josephson junction produces a nonlinear,
essentially lossless inductance. This converts the LC resonator into an anharmonic
oscillator suitable for implementing superconducting qubits.

2.2 Transmon qubit

A transmon qubit is a Josephson junction shunted with a large capacitor. The energy stored

in the junction follows from integrating dU = I(¢) V dt, yielding

Us(¢) = Ej (1 —cosg), (2.13)
where the Josephson energy is
hl. Pyl
E, = = . 2.14
7 2 2m ( )

We explicitly retain the additive constant +£;, which corresponds to the choice of zero for
the energy reference.

Now that we know the energy term for the JJ, we can write the full Hamiltonian of the
qubit and promote the conjugate variables to quantum operators. The conjugate variables
are the phase operator é and the Cooper-pair number operator n, which satisfy the canonical

commutation relation

(¢, 7] = i. (2.15)

12
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The capacitive (charging) energy is quantified by

e
Fr=— 2.16

so the full Hamiltonian reads
H=4Eci? + E, (1 — cos a}) . (2.17)

Close to the minimum of the potential well at ¢ = 0, the cosine can be expanded to quartic
order,
A
1— N — —. 2.18
cos ¢ 5 ~ 51 (2.18)

Introducing bosonic annihilation and creation operators b and bf, we write

& = dupi(b+01), (2.19)

= i npe(b' — b), (2.20)

>

where the zero-point fluctuation amplitudes are

2FB-\ 4
_ ' 2.21
¢pr ( EJ ) 5 ( )
E; \ 4
— . 92.22
Tzt (32Ec) (2.22)

These satisty ¢,pf nspr = %, and the harmonic oscillator frequency is

hwp =/ 8EJEC. (223)

13
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Expanding the quartic potential and retaining only number-conserving terms under the

rotating-wave approximation gives the effective Hamiltonian

Ec
2

Ec

Heg = hw, bTb — =2b'p — 7bTbTbb + const, (2.24)

where the constant includes contributions from zero-point fluctuations and the additive E;

offset. In terms of the number operator 7 = b'b, this is often expressed as

. E
Hog = hwor 7t — 7Cﬁ(ﬁ— 1) + const. (2.25)

Here the lowest transition frequency is

1 E
wor = /8B Ec ~ 70 (2.26)

which is the hallmark result of the transmon qubit [10-12]. The weak anharmonicity, de-
termined by FE¢, allows for selective addressing of the qubit transition while maintaining
insensitivity to charge noise in the large E;/Ec regime (typically F;/Eqc =~ 50). From
Eq. (2.25) it is clear that the additional term causes the individual levels of the transmon to
become progressively closer, i.e., to have sequentially lower transition energies. It is useful
to build intuition for this behavior.

We start by analyzing what happens when the first excitation is acquired by a qubit.
Consider the ground state (]0)), when no energy is stored in the qubit. In this case the

effective inductance of the JJ can be defined through

1 Eco 1
= \/8E;jEc — — = . 2.27
Wo1 3 JLc 3 \/LOT ( )

14
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Here Lo is the equivalent (small-signal) inductance of the JJ when the qubit is in its ground
state, and hwp; is the first excitation energy. For this particular discussion we treat the
qubit as a semiclassical nonlinear resonator. The inductance of the qubit is nonlinear and
will change as energy is stored; however, because the energy of the electromagnetic mode
is quantized, we may assume that the inductance remains approximately constant until the
qubit is excited with one photon and reaches its first excited state (|1)). Once excited, the
energy stored in the resonator oscillates between the capacitor and the JJ. When the energy
is momentarily stored entirely in the JJ, the current through it is maximized. Approximating

the stored energy in the JJ by

1
5Lmng = hwy = I3 = (2.28)

where Iy is the peak current through the JJ, and introducing the (small) peak phase am-

plitude A via I ~ I. ¢ so that A = I;x/1., we obtain

| 2 2hw
2 pk 01
A = (—C ) = 02 o . (229)

Our goal is to calculate the new inductance value of the JJ in the excited state. Once we
have that value we can calculate the qubit’s new frequency and subsequently estimate the

anharmonicity of the qubit. Returning to the instantaneous inductance,

- P ~ Lm A
L;(t) = T cos o)~ cos o) o(t) = Asin(wot), (2.30)
and for small ¢,
L 2 4
cos o =1+ o + O(¢"). (2.31)
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Because energy is stored in the qubit, the JJ is partially saturated; as a result the effective
inductance is larger than the ground-state inductance. To quantify this, consider the error

functional

Brr(L) = (@) — LI(1)"), (/) = % /0 f(t) dt, (2.32)

and minimize it with respect to L. Setting 0Err/0L = 0 gives
D(t) I(t P
L = PO gy — 20400, (2.33)
T

which provides a time-averaged linearization of the nonlinear inductance under semiclassical
conditions. With I(¢) ~ I.(¢(t) — ¢*(t)/6) and using (¢*) = A?/2 and (¢*) = 34*/8 for
B(t) = Asinwgt [13, Sec. 3.3.29], we obtain (to O(A?)):

(6%
{o1)

Dy (%) —
2rl, (¢?) —

Leq = = Lo {1 + éAQ + O(A‘*)} : (2.34)

Wl ||

Using Leq in the new resonance frequency of the qubit gives

1

VL€

where wyy is the transition frequency from the first to the second excited state (|]1) —12)).

W12 =

~1/2
—wor (14 342) "~ i (1- £47), (2.35)

The anharmonicity is then
w01A2
16

(2.36)

=Wz — W = —

Substituting (2.29) and (2.26) into (2.36) yields
E E :
c | Lo
X——|1—\/== . 2.
a = ( 8EJ> (2.37)
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Finally, since in the transmon regime E; > FE, we obtain the familiar leading-order result

aw=__¢ —_Zfc (2.38)

which matches the standard weakly nonlinear (Duffing) picture for the |0) — |1) transition
[14]. Higher transitions follow similarly; for example, the next spacing satisfies wog = w1z —

(see Fig. 2.3).

o N
<+ \)Evf: T m=— E;(1—cos¢)
. _ 1
Eg|
>
[=19]
= N
1 s £ 2 /2
o 53

Fig. 2.3: Comparison between the simple-harmonic-oscillator (SHO) potential (solid blue)
and the transmon qubit potential (dashed orange). The transmon’s nonparabolic
potential causes unequally spaced energy levels; the resulting anharmonicity o =
wia — wpp enables selective qubit control and high-fidelity measurement.

From (2.38) it is clear that parameter choice in qubit design is a balance: push E;/Eq
high enough for charge insensitivity while keeping E¢/h large enough (hundreds of MHz) to

preserve control and measurement performance. Here is a worked example of how to choose
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qubit parameters from a target frequency and anharmonicity. Say,

“ou_yscas 12— 900 Mz
2 2m
From |a| = E¢/h we get
o2
Ec/h=0200 GHz, (= —— ~96.9 fF. (2.39)

T 2E,

Using Eq. (2.26) (neglecting the small —E¢/h term for a back-of-the-envelope estimate),

By, (hwa)® _ (hfa)® ( Jo1 >2 (2.40)
Ec  8EE  8(hfe)* \VBfo) ' '
so with fo; = 4.5 GHz and f- = 0.200 GHz,
Ey
— ~63.2 2.41
o 63.28 (2.41)
which automatically satisfies wg; > |«|. This fixes
EJ - - o QGEJ - o q)o ~
5 = (By/Be) fo = 12,60 GHz, Io= =2 = 25504, Lyp = 5 ~ 129 nll

What if one insists on F;/E¢ in the 50-60 range? With Ex/h = 200 MHz fixed:

EJ/EC:50 = f01 = \/850fo=400 GHZ,

Ej/Ec =60 = fo =+/3-60 fo ~ 4.382 GHz.

Both already satisfy wg; > |a|, but they fall short of 4.5 GHz at |a|/2m = 200 MHz. To
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reach 4.5 GHz while keeping E;/E¢c = 60, solve Eq. (2.40) for fe:

4,
fo= Jou _ 5 GHa~ 2054 MHz,

VB(E;/Ec) V480

i.e., a slightly larger Fc/h (and hence slightly larger |a|). Conversely, keeping E;/Ec = 50

would require fo = 225 MHz to hit 4.5 GHz.

The main takeaway is that for charge insensitivity one must ensure E; > E¢. You can
approach this by increasing F; or by decreasing E¢; only the former preserves |a|, whereas
the latter reduces it. The numerical example above quantifies the trade-off: fy; = 4.5 GHz
and |a|/2m = 200MHz imply E;/Ec ~ 63.3 (with C' ~97{F, I.~25.5nA). Ratios in the
50-60 range already yield wy; > |a|, but at fixed E¢ they produce fy ~ 4.0-4.38 GHz;

reaching 4.5 GHz at those ratios requires a modest increase of E¢ (and therefore |a]).

2.3 Surrounding elements of a qubit and basic gates

A stand-alone qubit in an ideal world could store quantum information indefinitely. However,
a floating (fully isolated) qubit is useless in practice because we can neither excite it nor
read out its state. To make a qubit usable, several auxiliary elements must be coupled to
it. Typical examples include a readout resonator, a fast flux line, and an XY drive line. A
layout of a representative device is shown in Fig. 2.4(a), and an equivalent circuit schematic
is shown in Fig. 2.4(b). We will study each component that is added, in detail, and explain
how it enables control and/or readout of the qubit state.

Before analyzing individual elements, it is essential to understand their collective effect.
Each component coupled to the qubit introduces a pathway for energy to leak into the

environment, i.e., a loss channel. By quantifying the individual and cumulative loss induced
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by these components, we can choose the coupling strengths between the qubit and each

element in a principled way.

-

b)

XY Drive line Qubit-Qubit
| | coupling

Readout
Resonator

p ¢ ) N
Fast Flux line 1 | | J_
o) X

,_E_I_} Qubit
Fig. 2.4: Representative superconducting qubit and its immediate environment. (a) Device
layout highlighting the qubit island with Josephson junction(s), large shunt capaci-
tor, dedicated XY drive line for transverse control, fast flux line for (near-)DC /low-
frequency frequency tuning, and a capacitively coupled readout resonator con-
nected to a feedline. (b) Lumped-element circuit model used for analysis and
simulation, showing the qubit (effective L; || Cg) in parallel with the admittances

contributed by the attached control and readout ports. The couplings determine
both controllability and the Purcell-limited 77.

2.3.1 Purcell Loss

To analyze the net loss induced by each coupled structure (fast flux line, XY drive, readout
resonator + feedline, nearest-neighbour coupler), we reduce the overall network in Fig. 2.4(b)

to its Thevenin/Norton equivalent as seen at the qubit port and evaluated at the qubit tran-
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sition frequency w, [, 15]. The environment is then described by an input admittance

Yin(wq) = éRY;H(Wq) +1 %Yin(wq)a

placed in parallel with the qubit’s linearized elements (Josephson inductance L; in parallel
with total shunt capacitance Cg). Near resonance, we transform to a frame rotating at (or
close to) w,. In this frame, the slowly varying voltage envelope across the junction and
capacitor is insensitive to the reactive load Y, which produces only a small frequency

pull (Lamb/Purcell shift) but no dissipation [5]. For the purely lossy envelope dynamics we

therefore keep only
RYin(w,) = Gin  and neglect

Equivalent RLC circuit

SYin.

Yin}

Im{Y;}

| |
| |
)
g

Fig. 2.5: Effective qubit network and input admittance. The port-reduced environ-
ment seen by the qubit is captured by an effective admittance Yj,(w) placed in
parallel with L; || Cq. Its real part at w, sets the Purcell-limited energy-relaxation
rate via Eqs. (2.44)—(2.45); the imaginary part gives a small frequency shift.
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2.3.2 Purcell Loss

For the envelope description, the parallel network reduces to an effective parallel RLC
(Fig. 2.5) with a conductance Gy, shunting the qubit capacitor and inductor. Applying

Kirchhoff’s Current Law (KCL) at the qubit node for the envelope voltage v(t),

d
Co d—: + G v(t) ~ 0, (2.43)

—t/Ty

whose solution is v(t) o e with the paralle]l-RC time constant

Cq Cq

T, = == 2.44
! Gin §RYvin(“q) ( )
Equivalently, the energy decay rate is
1 RYiu(wy)
N=—-—="F7"%2 2.45
vy Co (2:45)

This matches the power/energy argument: the time-averaged power lost into the bath is
P = 1|V |*RYi,, while the stored energy is U = 1Co|V|?, hence P/U =T [5, 15]. Since
admittances add in parallel,

Rii(on) = RN ) = T = o >R o) (2.46)

where p € {flux, XY, RO+line, coupler(s)}. Each Y, can be (i) extracted from EM simula-
tion at the qubit port or (ii) obtained from compact models; for example, a dispersively cou-
pled readout resonator of linewidth r, yields the familiar Purcell channel I'pyeen = (g/A)?K,
5, 16].

The value in (2.44) computed from RY}, represents the best possible relaxation time set
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by external coupling in the given layout (a design-level ceiling). Real devices also suffer
from intrinsic mechanisms—quasiparticles, dielectric loss and two-level systems (TLS), sur-

face/interface losses, radiation from seams and packaging, etc. [17, 18]. These add rates, so

that
1 RYin(wy) 1
= mATe —+ —_ = Tl,tot S Tl‘%y, ) (247)
Tl,tot CQ Tl,intrinsic "
———— ———
Purcell/external ~ materials & defects

which cleanly separates engineered coupling (set by layout and port impedances) from
materials-limited decoherence. This analysis quantifies the overall loss added by the mea-
surement and control structures surrounding the qubit. In what follows, we study how both

energy decay and phase decoherence affect the qubit state.

2.3.3 Decoherence in qubit state

A general state of a two-level quantum system (qubit) can be expressed in the computational

basis {|g), |e)} as
) = alg) + Ble), (2.48)

where a, § € C are complex probability amplitudes that satisfy the normalization condition

la? + |B)? = 1. (2.49)

Since quantum states are defined up to a global phase, we may factor out a phase e
from both a and § without affecting physical predictions. By doing so, one can always
choose a representation where either o or 3 is real. This gauge freedom reduces the number
of independent parameters needed to describe a qubit state from four real numbers (two

complex amplitudes) to three. Thus, a full qubit state requires three real parameters for its
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description. For a pure qubit state, the density matrix is given by the outer product

o ap*
p = 1) (] = | (2.50)
a'f B
Here, the diagonal entries encode populations and the off-diagonal entries encode phase
coherence. This density operator is Hermitian, positive semi-definite, and satisfies Tr(p) = 1.
The condition for a pure state is p? = p.
To connect populations with energy relaxation, note first that amplitude damping trans-

fers population from |e) to |g) with characteristic time 77. For zero-temperature relaxation,

the excited-state population decays exponentially,

Pee(t) = pec(0) e_t/Tla Pgg(t) =1 — pec(t), (2.51)

and the coherence also acquires a relaxation-induced factor (see below). Correspondingly,
the state’s purity P(t) = Tr p?(t) decreases as the phase becomes mixed and the system ther-
malizes to the noisy environment, but eventually increases again because energy relaxation
drives the qubit toward its ground state.

By contrast, the off-diagonal elements p,. quantify phase coherence. Under amplitude
damping alone,

Pge(t) = pge(0) e T, (2.52)

Additional phase randomization (pure dephasing) multiplies this by e '#* when the noise is

effectively white around zero frequency, giving

t
Pge(t) = pge(0) exp|—5— — Tt |, = = o7 Tl (2.53)
2T,
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Here T'; is set by fluctuations of the transition frequency w,(t) = w, + ow(t).

2.3.4 Dispersive Qubit Readout

When a qubit is prepared in its excited state, the transition structure is altered by its
anharmonicity. This shift can be detected using classical microwave measurement techniques.
Although the excitation stored in a superconducting qubit can be described in terms of a
photon, the large anharmonicity renders the energy levels non-degenerate, allowing us to
model the qubit as an effective two-level system. In the absence of any other coupling, the
qubit is described by

o hwg,

Hq = 70’2, (254)

where w, is the qubit transition frequency and &, is the Pauli-z operator.

Direct scattering-type measurements of the qubit would irreversibly collapse the quantum
state after a single measurement, making them unsuitable for repeated or high-fidelity exper-
iments. To avoid this, quantum non-demolition (QND) measurement schemes are employed.
In such a scheme, the qubit is dispersively coupled to a linear microwave resonator or cavity
(Fig. 2.6), which can be probed without directly affecting the qubit. Because the cavity is
coupled to the qubit, the two form a composite system described by the Jaynes—Cummings
Hamiltonian:

i B
H = hw,d'a + % o+ hg (a6 +a6y), (2.55)

where w, is the resonator frequency, ' and @ are bosonic creation and annihilation operators
for the resonator mode, 64 are the qubit raising and lowering operators, and ¢ is the qubit—
resonator coupling rate [19, 20].

In the dispersive regime, where the detuning |A| = |w, — w.| > g, a Schrieffer—Wolff

transformation can be applied to Eq. (2.55) to eliminate the energy-exchange terms to leading
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Readout

Qubit Cer Resonator

Fig. 2.6: Dispersive readout. A linear readout resonator (frequency w., linewidth &) is
dispersively coupled to the qubit. Probing the resonator near w. maps the qubit
state onto a state-dependent cavity frequency shift (£x), enabling QND readout
via homodyne or heterodyne detection without directly exciting the qubit.

order. The resulting effective Hamiltonian is

. n
Hyisp =~ D (we + ¥ 6.) ala + 5 (wqg + X) 62, (2.56)

where y is the dispersive shift. For an idealized two-level qubit, the dispersive shift is
2
g
=L 2.57
X =5 (2.57)

while for a weakly anharmonic qubit, such as a transmon with anharmonicity a = wys—wp; ~

—FE¢/h, the more accurate expression is [10, 21]:

7o

X ~ —m. (2.58)
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In the limit || < |A], Eq. (2.58) reduces to the two-level result in Eq. (2.57).

To build intuition for Eq. (2.56), notice first that the resonator frequency is shifted by +x
depending on whether the qubit is in |g) or |e); conversely, the qubit frequency experiences
an ac Stark shift proportional to the average photon number in the resonator. This state-
dependent cavity frequency enables QND readout: by driving the cavity near w. 4+ x and
measuring the phase or amplitude of the transmitted signal, the qubit state can be inferred
without directly exciting it. The magnitude of y determines both the measurement signal-to-
noise ratio (SNR) and the measurement-induced dephasing rate [21]. A larger |x| improves
the separation of pointer states in phase space (faster, higher-fidelity readout) but also
increases backaction on the qubit; thus, x must be engineered to balance readout speed and
fidelity against preservation of coherence.

To make this more concrete, recall that a resonator with linewidth x has a photon lifetime
Teay = 1/K, which characterizes how long, on average, a photon remains stored before leaking
out. The closer a probe tone is to w,, the longer photons dwell in the cavity and the larger the
intracavity field amplitude becomes for a given drive power. Quantitatively, the Lorentzian

response
1

w —we)? + (r/2)?

[n(w)]* o ( (2.59)

shows that the stored energy—and hence effective delay—peaks sharply at resonance.
Next, view the qubit—cavity pair as two weakly coupled oscillators: in the dispersive
regime (JA| > g), the normal modes are only slightly hybridized and repel each other in
frequency space. If w, < w,, the dressed qubit frequency shifts slightly downward while the
cavity shifts upward, consistent with the perturbative result xy = ¢g/A [19]. When the qubit
is excited, its transition structure (through «) produces a corresponding state-dependent

dispersive pull on the cavity frequency—this is the operational heart of the readout scheme.
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Furthermore, if the cavity is driven to an average intracavity photon number i = {(a'a),
the dispersive Hamiltonian predicts a qubit Stark shift dw, = 2x7n. Coherent photons
exhibit Poissonian statistics, so the instantaneous photon number fluctuates with variance
An? = fi. These fluctuations induce stochastic shifts of the qubit frequency, which lead to
measurement-induced dephasing. More precisely, the qubit dephasing rate due to photon
shot noise is given by [21]

T 8;8%, (2.60)

where k is the cavity decay rate, reflecting the fact that the qubit integrates photon number
fluctuations over the cavity lifetime. High-fidelity measurement therefore requires a balance:
one must use enough photons to separate the cavity pointer states quickly, but not so many
that photon shot-noise-induced dephasing significantly reduces the qubit coherence during
the readout.

Finally, to connect with the Purcell channel in the input-admittance picture: for a qubit
coupled through a small capacitor C,,. to a readout resonator (frequency w,, linewidth &),
the environment seen at the qubit port is the resonator plus its feedline. Linearizing, the

resonator’s effective admittance at the coupling node is

K/2
i(we —w) + K£/2

Yies(w) ~ (2.61)

up to an overall scale set by the resonator impedance. The series coupling capacitor trans-

forms this to the qubit port as

2
Kn(w) ~ w202 "i/

T (we —w)i + k)2 (2:62)
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Taking the real part at w = w, gives

(wg = we)® + (1/2)*

R{Vin ()} ~ w2C2 (2.63)

Substituting (2.63) into (2.45) yields the Purcell-limited relaxation rate in the Thevenin

picture:

I\Ill’urcell %{}/lﬂ (Wq) } 0027" 2 K

T G T e+ (52

(2.64)

In the large-detuning (dispersive) limit, the term (x/2)? in the denominator can be neglected,

and the rate reduces to
pueell (i>2 kD A=—w—w (2.65)
1 — ) — Wy ) .

upon identifying the coupling g in terms of circuit parameters (C,,., mode impedances, and
zero-point voltages) [10, 16, 22]. Equation (2.64) is particularly convenient for arbitrary
environments: once Yi,(w) is computed (analytically or via EM simulation), the Purcell rate
follows from Eq. (2.45). In practice, the cavity-induced Purcell limit can be mitigated—and
often nearly eliminated—Dby inserting Purcell filters that strongly suppress transmission at
the qubit frequency while maintaining a passband around the readout resonator frequency.
Engineering the environment so that R{Yi,(w,)} ~ 0 suppresses Purcell loss without sacri-
ficing measurement bandwidth near w.. We will discuss specific Purcell-filter realizations in

the design chapter of this thesis.

2.3.5 Fast Flux line

A fast flux line delivers a controlled magnetic flux to a SQUID loop to tune a qubit’s

frequency on ns—us timescales. In a standard tunable transmon, the Josephson element
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is a dc SQUID—two Josephson junctions (JJs) in parallel, forming a loop threaded by an

external flux ®. The flux dependence of the SQUID’s effective Josephson energy FE e (P)

sets the qubit frequency w,(®), enabling both static tuning and time-dependent (parametric)

modulation for gates.

We firsst consider a symmetric SQUID with negligible loop inductance which consists

of two identical junctions with critical current /. and Josephson energy E; = ®gl./27

(®g = h/2e). Let the junction phases be ¢; and g, with the fluxoid constraint

) )
— =2r— =20 O =m—.
Y1 — P2 W@o ) 77(1)0

Defining the average phase ¢ = (91 + ©2)/2, the Josephson potential reduces to
Ujs(p, @) = —2F; cos(d) cos(p).
Thus the SQUID behaves like a single effective junction with flux-tunable energy
Eje(®) = 2E; cos(d), I e5t(®) = 21, cos(0).

Linearizing about the minimum, the small-signal Josephson inductance is

P Do

Lsq(®) = - '
150®) = 5T @) T T contr®/0

(2.66)

(2.67)

(2.68)

(2.69)

Now in an asymmetric SQUID with negligible loop inductance. If the junctions have

unequal critical currents I, # I.o but the loop inductance is negligible, set

801:<,D+5, (,02:90—5.
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The total current is

I(p,®) = I, sin(p + 9) + Lo sin(p — 0)

= (e + 1) sinpcosd + (I — 1) cos@sind.

This can be written as

I = 1I..4(P) sin(p + o),

with

I eni(P \/ Iq+ 1) COS(S} + [T — Icg)sinéf

o
\/ 2+ 1% + 21,1 Lo cos (27r—>
P

The corresponding small-signal inductance is

Do

L b)) = ——.
J’SQ( ) 27T Ic’eff(q))

(2.70)

(2.71)

(2.72)

(2.73)

For convenience, define the asymmetry parameter d = (I.q — I.9)/(I.1 + I.2) and average

critical current I, = (I + I.2)/2. Then

D, 1

I oii(®) = 21\ cos?s + d2 sin?9, Ljsq(®) =

which recovers Eq. (2.69) for the symmetric case d = 0.

A1, \/cos?d + d2sin2d

(2.74)

For a transmon-like mode with capacitance Cx and charging energy Eoc = €?/2Cy, the
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qubit transition frequency inherits the tunability of E;qgx(®P):

1

( SE (@) Ec — Ec>, (2.75)

valid in the transmon regime E;.¢ > E¢ [10].

A fast flux line with mutual inductance M to the SQUID loop delivers a flux
(P(t) = Py + M]ff(t), (2.76)

allowing both static biasing (®g4.) and time-dependent modulation Ig(t). The mutual induc-
tance value must be chosen to strike a practical balance: it should be large enough that a
reasonable current in the flux line can tune the qubit over a useful range (ideally approaching
a flux quantum ®, with comfortable current margins), yet not so large that the qubit decays

through the flux line and dissipate in to the 50 2 environment.

2.3.6 Qubit-qubit coupling

Up to this point we have discussed various mechanisms for single-qubit operations. However,
to realize a useful quantum processor we ultimately require a large-scale system contain-
ing thousands of qubits, not only with individual addressability but also with the ability
to generate entanglement between them. In superconducting architectures, the prevailing
approach is to arrange qubits in a two-dimensional (2D) lattice geometry, where each qubit
interacts only with its nearest neighbors [5, 20, 23, 24]. Such nearest-neighbor connectivity
is natural to planar lithographic layouts and provides a balance between hardware scalability
and gate fidelity.

There exist multiple physical mechanisms to induce qubit—qubit interactions on this
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platform. In this section we introduce some of the canonical approaches, beginning with the

simplest case of direct frequency tuning.

2.3.6.1 Direct resonant coupling

The most direct way to couple two superconducting qubits is via a static capacitance or
inductance (see Fig. 2.7(a)) between their circuit nodes. This results in an ezchange-type

interaction of the form

feo

5 0 i o? + hg(agrl)a(_m + U(_l)af)), (2.77)

where qubit 1 and qubit 2 have transition frequencies w; and ws, and g is the coupling
rate determined by the shared capacitance/inductance [5, 10]. Here o, denotes the Pauli-z
operator and o the qubit raising/lowering operators.

When the two qubits are brought into resonance (w; &~ ws), the exchange term mediates
coherent population transfer between the states [10) and |01) at the Rabi frequency 2g. This

is the hallmark of the so-called swap interaction:
110) <« [01), oscillating at rate 2g. (2.78)

In practice, one of the qubits (say qubit 2) is fabricated as a tunable transmon (SQUID-
based) while the other (qubit 1) remains at fixed frequency. By applying a calibrated dc flux
pulse to the tunable qubit, its frequency ws can be shifted into resonance with w;. While this
detuning condition (§ = |ws — wy| = 0) is maintained, the Hamiltonian in Eq. (2.77) drives
coherent population exchange, observable as oscillations in qubit 2’s excitation probability

(see Fig. 2.7(d)) if qubit 1 was in the excited state prior to applying the DC bias. This
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Fig. 2.7: Direct qubit—qubit coupling. (a) Two qubits coupled by a fixed capaci-
tance/inductance; qubit 1 is fixed frequency wy, qubit 2 is flux-tunable wy(P). (b)
Gate sequence: bring qubits into resonance to activate exchange for a calibrated
dwell time. (c) Spectroscopy illustrating the on/off resonance condition via DC
flux bias. (d) Coherent population oscillations of qubit 2 when § = wy — w; = 0,
evidencing excitation exchange; timing to half a period implements vViSWAP.

interaction can be harnessed to implement gates such as viSWAP by timing the evolution
to half a swap period.

Direct resonant coupling is the simplest way to entangle two qubits: it makes use of the
full bare coupling strength g without suppression factors, thus enabling fast gates. However,
there are trade-offs. When the qubits are parked far detuned in their idle states (to suppress
residual interaction), the tunable qubit must be pulsed deep into a flux-sensitive regime
during gate activation. This can introduce additional dephasing errors from flux noise and
reduce overall gate fidelity [20, 23]. Moreover, the always-on nature of the physical coupling

means that crosstalk and frequency-collision issues must be carefully mitigated by frequency
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allocation and control calibration [5].

2.3.6.2 Parametric coupling

A parametric coupling works exactly as the name implies: we keep the coupled qubits parked
at (or near) frequency sweet spots and drive the tunable qubit with a parametric flux mod-
ulation to activate qubit—qubit exchange. We consider two coupled qubits similar to the last
case; the only difference is that qubit 2’s frequency is modulated using an external pump
(Fig. 2.8(a)). The tunability of qubit 2 follows the standard SQUID/transmon law [10].
Below we (i) expand the time-dependent qubit frequency in a Taylor series about the DC
flux, (ii) write the Hamiltonian, (iii) move to the interaction picture, and (iv) derive the
sideband conditions and effective coupling in the two relevant operating regimes. Let the

tunable qubit frequency be

wa (@) = wo COS(,;—¢), o(t) = ¢pc + Acos(wpt), w, = 27 f,, (2.79)
0

where @ is the flux quantum, wy is a device constant set by circuit energies, and ¢p¢ is the
static bias. Define 0 := w¢/ Py and a := wopc/Py. With f(¢) := wa(¢) = wov/cos b, the first

two derivatives are

Owa oy wom sinf
00 o) = 20y \/cosf’ (280)

Pwy L wof 2 sin? 6
o =10 =-2(3,) [V + ) 250
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Fig. 2.8: Parametric two-qubit coupling. (a) Two qubits with fixed coupling; qubit 2
is flux-modulated at w,. (b) Gate sequence: apply a calibrated flux pump to
activate exchange only during the pulse. (c) Spectroscopy with pump off/on:
modulation of wy produces sidebands whose resonance condition follows Eq. (2.91)
(sweet spot) or Eq. (2.96) (generic bias). (d) Population exchange vs. time when
the sideband is tuned into resonance; a full swap implements iISWAP, while half

the time implements viSWAP.

Expanding about ¢pc with d¢(t) = A cos(wpt) gives, to O(A?),

n(t) = (600) + f'(600) 59(0) + 5 " (9c) 86(2)? + O(A?)

2 2
= Flgo) + - 1 (6n0) + A (Boc) cosliot) + - F(9nc) cos(2uyt) + O(4°).
0;2150 f1 )

(2.82)
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Thus the modulation produces a DC shift w?¢, a fundamental tone with amplitude &1, and
a second harmonic with amplitude es.

Sweet spot vs. generic bias. At a flux sweet spot (sina = 0), f'(¢pc) = 0 so the funda-
mental vanishes and the leading tone is at 2w, (via curvature f”). Away from a sweet spot
(sina # 0), both the w, and 2w, components appear, with the fundamental scaling o< A and
the second harmonic o< A2

We use an isotropic XY (exchange) interaction, keeping only flip—flop terms in the single-

excitation manifold:

H(t t
75 ) _ 4000 4 WQT() o® 1 g (otoy +orot). (2.83)

Split H(t) = Ho(t) + V with Hy(t) = %[wlagl) +wy(t)oP) and V = hg(of oy + o7 o).

Since [Hy(t), Ho(t')] = 0, the interaction-picture propagator is

. . t
Up(t) = exp [—%wlt ng)] exp {—%@g(t) 022)} , Oy (t) := / wa(T)dr. (2.84)
0
Using e*:0,.e7 77 = e*?g .,
Ulot Uy = of e, Uloy Uy = o5 e7192(0). (2.85)

Hence the interaction-picture Hamiltonian is

t
= g(0f 05 e + o7 0F W) o(t) == / 5(t)dr, (2.86)
0
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with instantaneous detuning (using the convention § = w; — ws)

d(t) = 0g — €1 cos(wpt) — €3 cos(2wyt) + - - -, 8o == wy — wPC. (2.87)

Integrating term by term yields a phase-modulated exchange,

o(t) = oot — Py sin(wyt) — Posin(2wpt) — - -, pr = %, Bo = 2672, (2.88)

Two operating regimes: zero vs. nonzero DC bias Zero DC fluz bias (sweet spot;

“two-photon” activation) Set sina = 0 (e.g. @ = 0). Then f'(¢pc) = 0 and, from (2.80)—(2.81),

A TA
o O = —_— " T (5 = - —_— . 289
o =0, X oo =-2(2) . =+ 2(E) e
The leading modulation index is
€ w TA\
2 0
— - _ - . 2.90
Pe 2, 16wp(<130) (2.90)

We use the Jacobi-Anger identity ¢#5m¢ = S>> J (z)e™? to expand

m=—00

efi[éotfﬁg sin(2wpt)] _ —idot +'LBQ sin(2wpt) __ Z J 71 (60— Qmwp)t
m=—00
Substituting into H; shows that each Fourier component carries a Bessel coefficient J,,,(52)
and oscillates at dg — 2mw,. Population exchange occurs when a sideband is (nearly) station-
ary, i.e.

do =~ 2mw, (m€Z). (2.91)
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The first accessible sideband is m = 41, giving the pump frequency

8 \ @,

(w1 —wo) + ] (E)Q‘ (2.92)

On this resonance, the effective exchange rate is [25, 26]

=g|J1(B2)] =~ Bl _ g o ﬁf (16l < 1) (2.93)
Gett = g |J1\P2 ~ g 2 _g32wp (I)(J 2 ) :

with the theoretical single-tone ceiling

g~ 0.582g at |Gy =~ 1.84, (2.94)

set by the global maximum of |.J;| [27]. Solving |fs] = 1.84 for A gives

4P 1.84
Agpt = —2 “p , (idealized; ignores higher-order/RWA breakdown/dephasing).
™ wWo
(2.95)
Harmonics at 6y ~ 4w,, 6w,, ... are present but suppressed: their amplitudes scale as

I (B2) ~ (B2/2)™ for | 32| < 1 [27]. Since here By oc A% [Eq. (2.90)], the sideband of order m
scales as A?™, i.e. much weaker than the leading (m = 1) channel when the pump amplitude
is small compared to one flux quantum. Operating at this point keeps the qubit’s frequency
modulated around its flur sweet spot (where dw,/d® = 0), which minimizes phase-decoher-
ence (dephasing) during the mixing process. The downside is that the frequency at which
population transfer occurs becomes amplitude dependent: the effective resonance (and hence
the exchange rate) shifts with the pump amplitude. In practice, this is addressed by jointly

calibrating the exchange-pulse frequency and amplitude. The benefit of near-minimal phase
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error at the sweet spot far outweighs the modest, additional calibration step required to
track the amplitude-dependent resonance.

When the qubit is set to a nonzero DC flux bias (generic bias; “one-photon” activation)
or for sina # 0 we have e, = Af'(¢pc) # 0 and 31 = &,/w, # 0. The expansion of e~*¢(®)
then contains fundamental sidebands at §y ~ nw, (n = 1,2,...) with the primary resonance

at

So(A) mw, = wi(A) ~[6(A), (2.96)

and effective coupling ger =~ ¢ |1(81)| =~ g |p1]/2 for |51] < 1 [25, 28]. Here the DC shift
5o(A) = w; —wPC(A) includes the quadratic term from Eq. (2.82); to this order the amplitude
dependence of the frequency condition enters only through that DC Stark shift.

We have used the rotating-wave approximation (RWA) for the exchange sector (g < wy 2),
small-amplitude expansions in A/®y, and ignored drive-induced dephasing/AC-Stark and
counter-rotating Bloch—Siegert corrections. These are well documented in parametric-gate

analyses [25, 26, 28] and can be included perturbatively if needed.

2.4 Entanglement and Two-Qubit Gates

Entanglement is a uniquely quantum correlation between subsystems that cannot be de-
scribed by any classical joint probability distribution. A bipartite pure state |¢) 5 is en-
tangled if it cannot be written as a product [¢) , ® [¢) 5. Entanglement enables nonclassical
tasks such as teleportation and superdense coding, and forms a resource underlying quantum
advantage in computation and communication [29].

Bell showed that any local hidden-variable (LHV) theory must satisfy certain inequalities

on correlators [30]. The Clauser—-Horne—Shimony—Holt (CHSH) form bounds the Bell param-
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eter S by |S| < 2 for all LHV models [31]. Quantum mechanics predicts (and experiments
confirm) violations up to the Tsirelson bound |S| < 2v/2 with entangled states such as the
Bell states [32, 33]. This demonstrates that entanglement has no classical counterpart. The
four Bell states form a maximally entangled orthonormal basis:

1

V2

1

%) = 7

(|00) + [11)), | =) = (|01) +1(10)). (2.97)

Two standard routes to generate them are (i) the circuit route using a Hadamard and a
CNOT, and (ii) the Hamiltonian route using exchange interactions (e.g., iSWAP / v/iSWAP)
that coherently swap single excitations between qubits.

Let the Hadamard and CNOT (control on qubit 1, target qubit 2) be

100 0

[ b ., CNOT = 0100, (2.98)
V21 0001
0010

in the computational bases {|0) ,|1)} and {|00),|01),]10),|11)} respectively. Acting on |00):

(H ® I)]00) = 2(]00) + [10)), (2.99)

2

S sl

CNOT(H ® I)|00) = -L(|00) + [11)) = [&*) . (2.100)

2

Similarly, choosing different inputs or local Z phases yields any desired Bell state. The
Hadamard gate is implemented from native single-qubit rotations available via resonant mi-
crowave XY control. For example, H can be synthesized as a short sequence of calibrated X

and Y pulses [20, 34]. A CNOT is compiled by combining a CZ with single-qubit Hadamards
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on the target qubit:
CNOT=(I®H)CZ(I®H).

Two-qubit entangling gates on superconducting processors are realized through hardware-
native interactions such as the cross-resonance (CR) gate [35] or controlled-Z (CZ) gates

activated by flux tuning or tunable couplers [23, 36, 37].

Entanglement from exchange: iISWAP and viSWAP The iSWAP gate swaps |01) <>

|10) and multiplies by ¢, leaving |00) and |11) unchanged:

1000 1 0 0 0
0040 0 & =0
Uiswap = , Uyiswar = - (2.101)
0 ¢ 00 0 &% o
0001 00 0 1

In many superconducting platforms, iSWAP is generated by an XY (exchange) Hamiltonian

Hex
h

=J(oyoy +0707), (2.102)

so that, restricted to the single-excitation subspace {|01),[10)},

A cos(Jt —1sin(Jt
U(t) = e Hext/h — (%) () : (2.103)

—isin(Jt)  cos(Jt)

Starting from |01):
|1(t)) = cos(Jt)|01) — isin(Jt)|10) . (2.104)
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At t = {5 (halfway to a full iISWAP),

[¥(55)) = 75(101) —i10)), (2.105)

which is maximally entangled (locally equivalent to |U=) up to single-qubit phase shifts).
Continuing to ¢t = 55 yields a full iSWAP: [01) — —i[10). This exchange can be achieved
directly or parametrically as explained in the previous text. All we have to do is replace
J — gefr; stopping the evolution at ¢ = m/(4gesr) implements ViISWAP and generates Bell-

quality entanglement directly from [01) or |10).

2.4.1 Concurrence as an entanglement measure

The basis of entanglement is that two-qubit states cannot be written as a tensor product of
two individual qubit states. This inseparability is the root of quantum correlations between
subsystems. The Bell states in Eq. (2.97) are examples of maximally entangled states. But if
our paired qubits are only partially entangled, how can we measure the correlation between
them? To quantify correlations from the full density matrix of a qubit pair, William K.
Wootters proposed a method [38]. For a general two-qubit mized state p, define the “spin-
flipped” matrix p = (o, ® 0,) p* (0, ® o)) and R = pp. Let {\;} be the eigenvalues of R in

decreasing order of their square roots. The concurrence is

Clp) = max{O, VA= Ve = Vs — \/A4} : (2.106)
For a pure state |¢)) = a |00) + b|01) + ¢|10) + d |11), Eq. (2.106) reduces to

C(|¢)) = 2|ad — bel. (2.107)
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Examples:
o [0F) = \/L§(|00> +]11)) = C' =1 (maximal entanglement).

e Exchange evolution [¢)(t)) = cos(Jt) |01)—isin(Jt) |10) has C' = 2|0-0—cos(Jt)(—isin(Jt))| =
|sin(2.Jt)|, peaking at t = 7/(4J) (the ViSWAP point).

So the concurrence value for a two-qubit state ranges from 0 (completely uncorrelated) to 1

for maximally entangled states.

Conclusion In this chapter, we discussed the fundamentals of qubits, with a particular
focus on the transmon qubit. We examined how the individual components coupled to a
qubit can be used to control and measure its state. We also explored the implementation
of two-qubit gates, which enable qubit—qubit coupling and the generation of entanglement.
Finally, we considered how entanglement can be quantified from the density matrix of a two-
qubit manifold. These tools and concepts are essential for operating a quantum computer and
will prove valuable for understanding the experiments and theoretical frameworks presented
in the following chapters. Equipped with this foundation, we now turn to the next chapter,

where an entangled qubit pair is used to probe the non-Markovianity of an environment.
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Open Quantum Systems

3.1 Introduction

Decoherence is one of the main obstacles to building reliable quantum technologies. It occurs
when a quantum system becomes entangled with its environment, and information about
the system is lost because the environment is not directly observed [39, 40]. A common way
to describe this process is through the Gorini-Kossakowski-Sudarshan—Lindblad (GKSL)
master equation [41, 42]. This equation assumes that the environment is weakly coupled to
the system and has no memory, a situation known as the Markovian regime [43].

Markovian noise is simple to model and often works well in practice. In fact, carefully
designed Markovian dissipation has been used as a tool for state preparation, stabilization,
error correction, and quantum simulation [44-51]. However, many physical systems are not
purely Markovian. In such cases, the environment retains a memory of its interaction with the
system. The resulting non-Markovian dynamics cannot be described by the GKSL equation
and are instead captured by the Nakajima-Zwanzig formalism [52, 53], which explicitly
includes memory effects. Such dynamics are common in systems with structured reservoirs
or strong coupling.

Non-Markovianity is not merely a source of unwanted noise—it can also be a useful
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resource. Memory effects can improve fault tolerance [54-56], enable better control [57],
protect coherence [58], and enhance quantum protocols such as teleportation [59]. Detecting
and quantifying non-Markovianity is therefore an important part of understanding open
quantum systems.

In this chapter, we use superconducting qubits both as entanglement probes and as a
controllable environment. By coupling one qubit of an entangled pair to an engineered reser-
voir, we monitor how entanglement evolves over time and detect signatures of information
backflow. We also use additional qubits to build a tunable environment with adjustable
memory. This approach allows us to study and control the transition between Markovian

and non-Markovian dynamics in a highly flexible and programmable way.

3.2 Quantifying Non-Markovian Behavior

To properly capture the non-Markovian behavior of a quantum environment, it is important
that the measure we use be sensitive to both energy relazation and dephasing memory ef-
fects. In other words, the probe quantity should contain information about changes in both
populations and coherences. There are two widely used and experimentally accessible ways
to quantify non-Markovianity (fig. 3.1): the trace distance method [34, 60-62] and the

concurrence (entanglement) method [38, 63].

3.2.1 Trace distance method

In the trace distance approach, we prepare two different initial states p;(0) and p2(0) and

let both interact with the environment for the same duration. After this interaction, we
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measure their trace distance [34]

D(pr (1) p2(8)) = 3 lo1(8) = pa(0)],- (3.)

If the environment is Markovian, each state is driven toward the same steady (thermalized)
state, causing the trace distance to decay exponentially to zero over time. This reflects a
one-way flow of information from the system to the environment with no memory [61, 62].
However, if the environment retains quantum information, the trace distance exhibits
nontrivial time evolution [60, 61]. In particular, there can be intervals during which the
trace distance increases, signaling that some information previously lost has flowed back
into the system. This behavior is illustrated schematically in Fig. 3.1 (red curve). The total
amount of information backflow can be quantified by integrating over all intervals where the

trace distance grows:

N = /t:f gt ’dD(m(z,m(ﬂ) ’ _AD, (3.2)

where AD = D(ty) — D(ty). For Markovian dynamics, Np = 0, whereas any positive

contribution indicates non-Markovianity [61, 62].

3.2.2 Concurrence method

Entanglement has no classical analogue, so it is a natural probe of quantum memory effects
in the environment [63]. In this method, we prepare two qubits—a system (@) and an ancilla
(A)— in a maximally entangled state, such as

|07) = —=(]01) + € |10) ), (3.3)

2

-
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and then let one or both qubits interact with the environment while the other is kept isolated.
If the environment is Markovian, the concurrence Clpg a(t)] [38] between the two qubits

decays monotonically as the entanglement is irreversibly lost.

a)

b)
p1(0) p(t) P
Interaction < n Intgr:?ztion ( n
with Env p2(t) with Env . P
p2(0)
c

)

I non- Markovian

D(p, (), p2(©))or Clpg.a(®) ]

t

Fig. 3.1: Two methods to measure non-Markovianity of the environment : (a)
the trace-distance method and (b) the concurrence method. An example of the
time evolution of either quantity is shown in (c). If the observable decreases
monotonically, the environment is Markovian (green curve); if there is any revival
in the measured quantity, the environment has non-Markovian properties (orange
curve).

On the other hand, if the environment can store and later return quantum information,
part of the entanglement is temporarily transferred to the environment and then flows back.
This appears as an upward trend or revival in the concurrence time evolution [62, 63]. We

can quantify this effect using

t
ch/fdt‘W’—AC, (3.4)
to

where AC = C(to) — C(ts). As before, if there is no information backflow, Nz = 0; nonzero
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values correspond to measurable non-Markovian behavior.

3.3 Concurrence-Based Probing of the Simulated
Environment

In this chapter, we present a Concurrence-based method to probe the dynamics of a sim-
ulated non-Markovian environment. Our platform consists of a three-qubit superconducting
quantum processor designed to allow controlled interactions between a probe system and an
engineered environment. The layout of the processor is shown in Fig. 3.2.

The device comprises two primary qubits: a system qubit ()) and an ancilla (A),
which together form the entangled probe used to detect environmental memory. Both @)
and A are coupled through a A/2 coplanar waveguide resonator. The system qubit @ is
frequency-tunable through a Superconducting QUantum Interference Device (SQUID) loop
that provides a flux-tunable nonlinearity.

A third qubit, labeled environment (F), is also frequency-tunable and is coupled to
@ via a second \/2 resonator. All three qubits are dispersively coupled to their respec-
tive readout resonators. This architecture allows us to implement tunable and controllable
coupling between the probe and the environment, which is essential for simulating different

non-Markovian regimes.
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Fig. 3.2: Quantum processor layout. Schematic of the device showing three qubits
labeled “Environment” (E), “Qubit” (@), and “Ancilla” (A). Nearest-neighbor
couplings are mediated by A/2 resonators. Each qubit is dispersively coupled to
a readout resonator probed through a common feedline. E and @) are frequency-
tunable using on-chip fast flux lines.

3.3.1 System Hamiltonian

The dynamics of the three-qubit system can be described using the following Hamiltonian

in the dispersive frame (h = 1),

1. .
H= ). [ — 5Wei0: + (Wei = Xaed)alaiok | + Jaqonod + Jqrodal. (3.5)
i=A,QE

Here, 0, and o, are Pauli operators for each qubit, and a' (a) are the cavity creation

(annihilation) operators. The Lamb-shifted qubit frequency is @y = wq + Xqe; Where xge
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is the dispersive coupling strength between each qubit and its readout resonator [5]. The
coupling rates Ju q and Jq g are tuned dynamically by applying a parametric flux modulation
to (Q and F, which effectively activates resonant exchange interactions between the qubits

25, 28].

3.3.2 Dephasing-Induced Uncoupling: Classical vs Quantum

Picture

To fully understand the experimental behavior, it is useful first to establish what we should
expect from the system in the absence of experimental imperfections. For this purpose, we
simulate the Hamiltonian dynamics of the system and examine its time evolution. We choose
a simple model where the Qubit and the Environment are coupled, while the Ancilla remains
uncoupled. The system is initialized in a maximally entangled state between the Qubit and
the Ancilla so that we can directly monitor how environmental dephasing affects entangle-
ment dynamics and energy exchange. Since the Qubit and the Ancilla are not coupled, there
is no need to write an explicit interaction Hamiltonian for those two subsystems.

This simulation also highlights the fundamental physical difference between the quan-
tum and classical pictures of an otherwise similar coupled system. While classical damping
modifies the oscillation spectrum directly, quantum dephasing acts only through the Envi-
ronment’s phase, leaving the Hamiltonian spectrum untouched. This is precisely what makes
the observation of Zeno suppression in such systems a clean signature of genuinely quantum
behavior.

The three-qubit Hamiltonian governing the evolution of the coupled Qubit and Environ-
ment is

H=g(opog+ 0505) , (3.6)
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where ¢ is the coherent exchange coupling between the Environment and the Qubit. The
Ancilla remains uncoupled during the evolution. All three qubits are subject to intrinsic
energy relaxation at rate v;, while the pure dephasing rate 7, is applied to the Environment
and varied systematically.

In all simulations, the pure dephasing rates on the Qubit and Ancilla are fixed at
Ve =t =20x10% s,
while the environmental dephasing rate is swept over
V5 €10,3x10% s
The coherent exchange coupling is set to

9 _ .24 MHz.
2

The system is initialized in the Bell state between the Qubit and Ancilla,

1

¥qa(0)) = NG

(101) + [10)),

while the Environment is prepared in its ground state. The Lindblad evolution is computed
using QuTiP [64, 65], with collapse operators corresponding to both energy relaxation and

pure dephasing channels.
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Fig. 3.3: Simulated concurrence value. The plot shows the concurrence evolution in
two cases: one in which the Qubit-Environment coupling is set to zero (blue),
and a second in which the Qubit is coupled to the Environment (orange).

Figure 3.3 displays the time evolution of the concurrence between the Qubit and An-
cilla as the environmental coupling is turned on and off. The oscillatory trend when the
coupling is on is the signature we are looking for in a non-Markovian Environment. A far
richer physics landscape can be explored if we can tune the memory of the Environment. We
do this by increasing the amplitude of the dephasing operator and observing what happens
to the concurrence evolution. Figure 3.4(a) displays the time evolution of the concurrence
between the Qubit and Ancilla as the environmental dephasing rate Vf is increased. For
small dephasing, coherent Rabi-like exchange between the Qubit and the Environment leads
to rapid degradation of entanglement between the Qubit and Ancilla. As vf increases, there
comes a point where the oscillations vanish completely and a purely exponential evolution
appears. This is the signature of a transition from a non-Markovian to a Markovian environ-

ment. At sufficiently large Vf > g, we see a reversed trend [Fig. 3.4(b)], and the concurrence
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improves as we increase the noise amplitude. This indicates a well-known quantum effect,
the quantum Zeno effect [66-69], in which frequent or effective measurement of a subsystem
inhibits coherent transitions. We will discuss this effect in detail during the experimental

data section.
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Fig. 3.4: Memory effect of the Environment. (a) Evolution of the concurrence for
different dephasing rates of the Environment. (b) A 2D colormap of concurrence
evolution while sweeping the dephasing rate of the Environment.

To contrast this behavior with a classical scenario, we consider a pair of linearly coupled
harmonic oscillators with coupling rate g, where one oscillator (analogous to the Environ-
ment) is subject to damping . Increasing vg suppresses energy exchange and drives the

system from underdamped oscillations to critical damping and eventually to overdamping.
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The oscillation frequency of the damped classical system is
Qo = \/w? — LB, (3.7)

where wy is the undamped resonance frequency. As g increases, (). softens continuously
and eventually vanishes at the critical damping threshold. This frequency renormalization is
a direct manifestation of damping modifying the eigenvalue spectrum of the classical system.

The quantum case exhibits a qualitatively different behavior. Pure dephasing of the En-
vironment acts only on its phase coherence and leaves the Hamiltonian spectrum unchanged.
As a result, increasing ’yf strongly suppresses the amplitude of coherent exchange between
the Qubit and Environment but does not alter the oscillation frequency itself. Once Vf
exceeds the coupling g, the dynamics are abruptly inhibited, effectively decoupling the two
subsystems without any spectral softening.

This stands in sharp contrast to the classical picture, where damping renormalizes the
normal-mode frequencies and leads to a smooth transition from oscillatory to overdamped
behavior. The absence of frequency softening in the quantum case is therefore a direct
signature of quantum Zeno suppression, reflecting the role of phase as an extra quantum

degree of freedom that has no classical counterpart.

All quantum simulations presented in this section were performed using QuTiP, while the
classical comparison was obtained from coupled linear differential equations for harmonic

oscillators with tunable damping.

3.3.3 Device design and simulations

The device layout is designed using the Qiskit Metal package [70], incorporating the promi-

nent Xmon qubit geometry [71]. The layout is then imported into Ansys to perform finite-
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wq/2m (GHz) | |a|/27r (MH2) | Xqc/27 (kHz) | we/27 (GHz) | x/27 (kHz) | Th (us) | T5 (us)

Ancilla | 4.6 [4.2] [ 195 [212] | 210[230] | 7.15[6.94] | 200 [270] | [32] | [41]
Qubit | 5.1 [4.65] | 175 [180] | 210[250] | 7.3[7.09] | 200 [206] | [31] | [39]
Env. | 5.6[5.37] | 180 [140] | 200 [265] | 7.47 [7.21] | 200 [170] | [28] | [38]

Tab. 3.1: Simulated [measured] parameters of the device used in the experiment.

element simulations using the eigenmode solver. The simulation results are subsequently
imported into the energy-participation quantization package [72] to extract the qubit fre-
quencies (wq) and anharmonicities () as well as the readout resonator frequencies (w.) and
qubit—cavity dispersive shifts (x,.). Moreover, the linewidths of the resonators (k) are es-
timated using HFSS-driven modal scattering simulations after applying the 3-dB method
[73] to the simulated transmission profile (S;2). Table 3.1 shows the simulated parameters
of the device used in the experiment, with the measured values written in brackets, indicat-
ing approximately 90% agreement between simulation and measurement. Additionally, the
Ancilla—Qubit and Qubit—Environment mediating resonator frequencies are designed to be

8.0 and 8.6 GHz, respectively.

3.4 Tools required to run the experiment

In this section, we discuss the tools required to experimentally realize the Hamiltonian
described above. We need to set up the three-qubit quantum processor, establish two-
qubit gates for both the Qubit—Ancilla and Qubit—Environment pairs, and, finally, tune the

memory of the Environment.
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Fig. 3.5: Cryogenic setup of the experiment.

3.4.1 Experimental Setup

Figure 3.5 shows the cryogenic setup of the experiment. The device is packaged in a copper
box and surrounded by an additional copper can as well as a Cryoperm shield to protect it

from infrared radiation and external magnetic fields. The device is further thermalized to the
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mixing-chamber stage via a copper plate. The coaxial lines are thermalized via cryogenic
microwave attenuators. Note that the final attenuators are specific cryogenic attenuators
(QMC-CRYOATTEF).

For the fast flux lines (FFL), we used a total of 40 dB attenuation and 300 MHz low-pass
filters (Mini-Circuits VLFX-300) to suppress high-frequency noise, with a bias tee at the top
of the fridge to apply a DC current to tune the qubit frequencies. The drive lines DL1 and
DL2 have different attenuation values (70 dB and 60 dB) to account for differences in their
on-chip coupling. This arrangement of attenuators allows us to achieve Rabi oscillations as
fast as 20 MHz. In addition, we installed 7.2 GHz low-pass filters (Mini-Circuits VLFX-
72004 ) to mitigate high-frequency noise. Finally, for the readout input line, we added 60 dB
of attenuation with a K&L low-pass filter (LPF) at 8 GHz (4L.250-7344/T12000-O/0O). An
Eccosorb infrared filter [labeled QM IR (QMC-CRYOIRF-002MF), or XS04 (an equivalent
element)] was installed on every microwave line inside the copper shielding with > 10 GHz
cutoff to absorb infrared radiation.

To amplify the output signal, we use a high-electron-mobility transistor (HEMT) low-
noise amplifier at the 4 K stage and a traveling-wave parametric amplifier (TWPA) at mil-
likelvin temperatures with gains of about 40 dB and 20 dB, respectively. The TWPA used
in this experiment is based on the SNAIL architecture, resulting in reversed Kerr phase
matching [74], with bandwidths as high as 4 GHz and noise temperatures of about 300 mK.
An additional advantage of this type of TWPA is that it can be pumped at frequencies
~2 GHz away from the range of interest through a directional coupler, which results in

minimal interference between the pump and the readout signal.
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3.4.2 Parametric Coupling and Entanglement Generation of the

Qubit and Ancilla

We now move from describing the experimental setup to establishing the key qubit operations
required for the experiment. The first step is to prepare the probe—an entangled state
between the Qubit and the Ancilla (Fig. 3.6(a)). We implement a viSWAP gate to generate
a maximally entangled Bell state between these two qubits.

The Qubit is frequency-tunable via a SQUID loop, while the Ancilla is a fixed-frequency
transmon [10]. To minimize flux noise and maximize coherence, we park both qubits at their
respective flux sweet spots and activate coupling through parametric flux modulation [25,
75]. An AC flux drive is applied to the fast flux line of the Qubit at approximately half the
detuning between the Qubit and Ancilla (Fig. 3.6(c)).

To find the optimal parametric pump frequency and amplitude, we prepare the Qubit
in its excited state with a m-pulse and perform spectroscopy on the Ancilla (Fig. 3.6(b))
while sweeping the pump frequency. A peak in the Ancilla response marks the resonance
condition (Fig. 3.6(d)). A finer scan around this point reveals the characteristic chevron
pattern (Fig. 3.6(e)) in the excitation probability of the Ancilla, indicating coherent energy
exchange between the Qubit and Ancilla. The optimal parametric pump frequency is found

to be
1
Wpump ~ §|WQ — wal, (3.8)

corresponding to half the qubit detuning [26, 28]. From this chevron profile, we extract a

parametric coupling rate of Qq /27 = 0.477 MHz.
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Fig. 3.6: Parametric gate calibration for the Qubit—Ancilla pair. (a) A schematic
of the pair to be parametrically coupled. (b) Gate scheme to find the paramet-
ric exchange frequency and to acquire the chevron plot. (c) Frequencies of the
Qubit and Ancilla while the parametric gate is on. (d) Parametric modulation
of @ enables resonant coupling with A at the detuning frequency Aqga/2. (e)
Parametric resonance between () and A observed by preparing () in its excited
state and scanning the modulation frequency.

With the pump frequency and amplitude calibrated, the parametric modulation imple-
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ments a tunable resonant exchange interaction described by
Hing :geff(O'_%O'é—l—O'c_Qo'ﬁ)’ (39)

where gq¢ is the effective coupling strength. A 530 ns parametric pulse corresponds to a

iISWAP gate (Fig. 3.6(e)), ideally producing the Bell state

1 i
) :E(|1O>+e¢|01>), (3.10)

where the first and second qubits correspond to the Qubit and the Ancilla, respectively.

We characterize the resulting entangled state using two-qubit quantum state tomography.
Nine joint Pauli expectation values {(¥qXa)}, with ¥qa € {X,Y,Z}, are measured by
simultaneous readout of the Qubit and Ancilla [76]. The average single-shot readout fidelities
are 0.97 (Qubit) and 0.96 (Ancilla). We reconstruct the density matrix using maximum-
likelihood estimation [77], as shown in Fig. 3.7(b). The prepared Bell state exhibits a fidelity
of 0.91 and a concurrence of 0.89 (Fig. 3.7(b)).

With the Qubit and Ancilla entangled, we now study the evolution of the entanglement
over time. We apply the same entanglement gate as discussed earlier, but now instead of
reading out the Qubit and Ancilla immediately, we wait for an increasing amount of time
and plot the concurrence evolution (Fig. 3.7(a)). We display the Qubit—Ancilla concurrence
versus time in Fig. 3.7(c). The concurrence slowly decreases over a timescale consistent with
the individual dephasing times of the Qubit (T, @ — 39 ps) and the Ancilla (T, @ =1 us)

(Fig. 3.7(c)), i.e., C exp(—t/T;(Q) - t/T;(A)), as shown by the dashed line in Fig. 3.7(c).
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Fig. 3.7: Qubit-Ancilla (no Environment) concurrence evolution: (a) Gate
schematic to measure concurrence evolution versus time. (b) The entangled state
used to probe the environment. (c¢) Evolution of the concurrence when no engi-
neered coupling is on. As a result, the concurrence decays exponentially with the
total dephasing rate of the Qubit and Ancilla, 'yg + %‘;‘.

3.4.3 Parametric Coupling Between Qubit and Environment

We now turn to studying the interaction of the Qubit—Ancilla subspace with the Environ-
ment. The procedure for coupling the Qubit and the Environment follows the same general
approach as the Qubit—Ancilla coupling, but with additional constraints due to the fridge
filtering. The detuning between the Qubit and Environment at their respective flux sweet
spots is approximately 700 MHz. Driving the Qubit at half this detuning is not possible
because of the 300 MHz low-pass filters on the fast flux line.

To overcome this, we use a symmetric parametric flux modulation scheme in which
both the Qubit and Environment are driven simultaneously with the same amplitude and

frequency. This creates sidebands centered between the two qubits and effectively lowers the

62



Chapter 3. Open Quantum Systems

required pump frequency by a factor of four:
1

Wpump ~ ) WQubit — WEnvironment | = 27 X 175 rad./us. (3.11)

This brings the two qubits into parametric resonance without modifying the fridge setup.

The resulting resonant transverse coupling between the Qubit and Environment has rate
Qqr =27 x 0.473 rad./us, (3.12)

limited by the resonator-mediated interaction between the pair.
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Fig. 3.8: Qubit—Environment coupling. (a) Gate sequence for the coupled Environment
and entangled-pair experiment. (b) Parametric modulation of both @ and F
enables population exchange at approximately Aq /4. (¢) Concurrence evolution
when the Qubit—Environment coupling is on (green) and when the coupling is off

(black).

We calibrate the pump by first exciting the Qubit with a m-pulse and performing spec-
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troscopy on the Environment under simultaneous flux modulation. By sweeping the pump
frequency, we observe a resonance peak in the Environment response. A finer scan reveals
the characteristic chevron pattern, which is used to extract the optimal pump frequency and
amplitude for population exchange.

After calibration, we prepare the Qubit—Ancilla subsystem in a Bell state using the
ViSWAP gate. We then apply the parametric modulation to couple the Qubit and Envi-
ronment (Fig. 3.8(a)). By varying the pump pulse length, we observe the time evolution of
the concurrence C(t) of the Qubit—Ancilla subsystem, as shown in Fig. 3.8 (¢) (green curve).

Initially, the entanglement between the Qubit and the Ancilla decreases rapidly due to
the monogamy of entanglement [78]: introducing entanglement between the Qubit and the
Environment necessarily reduces the entanglement between the Qubit and the Ancilla. At
longer times, however, the concurrence revives as the Environment state is swapped back into
the Qubit. This revival is a clear, time-resolved signature of non-Markovianity, indicating
that the environment has quantum coherent memory—consistent with the fact that the
environment here is itself a single two-level system.

By evaluating Eq. 3.3 over the interval t € [ty = 0 us, t; = 10 ps|, we obtain a non-
Markovianity of A" = 1.4. This directly quantifies the strength of the memory effect associ-

ated with the Qubit—Environment coupling.

3.4.4 Tuning the Memory of the Environment via

Pseudo-Thermal Noise

A key feature of this experiment is the ability to tune the environment’s memory on
demand by controlling its dephasing rate. We achieve this by injecting pseudo-thermal

noise into the Environment’s readout resonator, which shortens its phase-coherence time
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and allows us to study how controllable memory affects non-Markovian dynamics.

We generate noise with a thermal-like spectrum by frequency-modulating a monochro-
matic tone at the Environment’s readout resonator frequency (Fig. 3.9(a)) with Gaussian
noise from a function generator. The modulation bandwidth (~ 1.8 MHz) ensures a flat
noise spectrum around resonance. The bandwidth is set by the modulation amplitude, while
the overall photon number is controlled via an I/Q mixer with a DC offset. This tunable

pseudo-thermal noise acts as an adjustable dephasing channel for the Environment.
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Fig. 3.9: Tuning the memory of the Environment. (a) Generation of Gaussian noise
by frequency-modulating a monochromatic tone with a Gaussian noise source. (b)
Noise spectrum generated by frequency-modulating a monochromatic tone with
Gaussian noise. By driving the Environment’s readout resonator with pseudo-
thermal noise of amplitude Aj,, we tune the Environment’s memory.

When this dissipation channel is present, the Qubit-Environment parametric resonance

is modified. We therefore recalibrate the parametric coupling for each noise amplitude.
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Figure 3.9(b) shows the noise spectrum, while Fig. 3.10(a) presents the spectroscopy of the
Environment excitation probability under parametric driving of both qubits.

At higher noise amplitudes, the resonance becomes asymmetric [Fig. 3.10(b)], consistent
with a thermal photon distribution. From these spectra, we extract the FWHM linewidth,
which directly corresponds to the increased Environment dephasing. We calculate the de-
phasing rate by performing Ramsey measurements on the Environment as we increase the
noise amplitude [Fig. 3.10(c), blue]. While Ramsey is a good method to convert arbitrary
noise amplitude to Environment dephasing at low rates, at higher dephasing rates Ramsey is
not a reliable tool for measuring dephasing. Instead, we calculate the Environment dephasing
rate at higher amplitudes by measuring the linewidth [Fig. 3.10(c), green] of the spectroscopy
of the Environment excitation probability under parametric driving of both qubits and scal-
ing by 87 to account for symmetric modulation of the Qubit and Environment at their flux
sweet spots. When compared to the Environment dephasing rate obtained via Ramsey mea-
surements [Fig. 3.10(c), blue], the scaled-linewidth method shows good agreement across a
wide range of noise amplitudes, demonstrating that the parametric coupling remains robust

even under strong dephasing.
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Fig. 3.10: Qubit—Environment parametric resonance in the presence of pseudo-
thermal noise. (a) Spectroscopy of the Qubit-Environment parametric reso-
nance for different noise amplitudes. (b) Asymmetric resonance profile indicative
of thermal photon statistics (used to calculate line width of the Environment us-
ing FWHM). (c) Comparison between scaled linewidth (green) of Environment
and its dephasing rate extracted from Ramsey measurements (blue).

Introducing pseudo-thermal photons effectively enlarges the Environment to include the
quantum states of light in the readout resonator. This is described by a dispersive interaction

Hamiltonian

Hy = xa'ao®, (3.13)

where x /27 = 200 kHz is the dispersive coupling rate, a'a is the resonator photon-number
operator, and ¢ acts on the Environment. Fluctuations in the intra-resonator photon
number induce dephasing of the Environment through an AC Stark shift [47, 79].

The noise-source bandwidth (1.8 MHz) exceeds y, ensuring a uniform drive independent
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of the Environment state, with a short correlation time (90 ns) that allows us to treat the
dephasing as effectively Markovian. Direct Ramsey measurements establish a relationship
between the dephasing rate v and the input noise amplitude Aj;:

v =1.84 (us) tAL°

mn ?

(3.14)

as shown in Fig. 3.10(c) (black straight line).

3.5 Concurrence Evolution for Different Dephasing
Rates in the Environment

We study how dephasing in the Environment controls the entanglement dynamics of the
Qubit—Ancilla pair. Broadband thermal photons injected into the Environment cause a
slight dispersive shift of the parametric exchange condition between the Qubit and the
Environment. Consequently, for each injected-noise amplitude A;, we first calibrate the
parametric-drive frequency so that the Qubit—Environment exchange is on resonance. Fig-
ure 3.11(a) shows the resulting calibration: starting from the Qubit in the excited state, we
activate the parametric drive for a variable duration and study Zg(t) to maximize popu-
lation transfer. As the Environment dephasing is increased, the exchange contrast in the

Qubit—Environment manifold diminishes.

Having calibrated the exchange frequency for each A;,, we next measure the time evo-
lution of the Qubit—Ancilla concurrence for a range of Environment dephasing rates. The
experimental sequence at each setting is: (i) prepare the Qubit and Ancilla in a maximally
entangled Bell state, (ii) turn on the Qubit-Environment coupling, and (iii) record the con-

currence versus time. In Fig. 3.11(c) we observe that increasing the Environment dephasing
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induces a transition from non-Markovian (oscillatory, revival-prone) to Markovian (mono-
tonic, envelope-like) dynamics. We quantify the suppression of memory effects using the
non-Markovianity measure defined in Eq. (3.4) and summarized in Fig. 3.11(d): as the En-
vironment dephasing is increased beyond v ~ 1 (us)™', A becomes consistent with zero.
However, the dynamics are not immediately Markovian in the sense of being well captured
by a time-homogeneous GKSL description of the reduced Qubit—Ancilla subsystem (see In-
troduction and [41, 42]); rather, there is a crossover. In our data, a simple exponential

! whereas it fails to capture revivals

model for the concurrence matches well for v 2 3 (us)~
and non-monotonic envelopes at smaller 7 (cf. [80]). Thus, the transition is gradual, reflect-
ing both experimental sensitivity and the definition of an envelope in traces with residual

oscillations.

To present the complete data in one visualization, we plot a color map of concurrence
versus time and Environment dephasing rate in Fig. 3.11(c). Panel 3.11(b) shows several
time-domain traces for selected values of ~ to illustrate two clear trends. First, in the non-
Markovian regime, increasing dephasing accelerates the decay envelope by damping revivals
(compare v = 0 and v = 0.5). Second, once the dynamics are Markovian, further increasing
dephasing slows the decay of the concurrence (e.g., v = 2.4 vs. v = 6.4)—a hallmark of
Zeno stabilization of entanglement [81-88]. Operationally, the thermal photons implement
continuous measurement of the Environment at a rate set by v, which reduces the effective

Qubit—Environment exchange.
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Fig. 3.11: Concurrence evolution while tuning the Environment’s memory. (a)
For each A;, we calibrate the parametric-drive frequency between the Qubit and
Environment by studying Zg(t) and maximizing the exchange [80]. (b) Con-
currence versus time for selected dephasing rates. (c¢) Qubit—Ancilla concurrence
versus time across Environment dephasing rates. The onset of monotonic behav-
ior marks the crossover from non-Markovian to Markovian dynamics. (d) The
non-Markovianity measure (3.4) across the transition. Error bars denote the
standard error of the mean from three independent runs. The gray bar indicates
the measure applied in the Environment decoupled case, providing a background
reference.

Separating control and observable rates. A common source of confusion is the differ-

ence between the control rate (Environment dephasing) and the observed decay rate (con-
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currence envelope). We therefore make this separation explicit:

Control (set): ”yf via injected noise,

Observable (fit): I'. from the concurrence envelope. (3.15)

In the non-Markovian regime, the concurrence C(t) can be oscillatory and non-monotonic;
we define an upper envelope Ce,,(t) (via the sequence of local maxima or an equivalent

monotone-envelope procedure) and fit
Cone(t) =~ Cye et (non-Markovian regime), (3.16)

to obtain an effective envelope rate I'c. In the Markovian regime, the full trace is well

modeled by a single exponential,
C(t) =~ Coe ', (Markovian regime), (3.17)

so that I'. follows directly from a linear fit to In C'(f) on the chosen time window. For a

general discussion of non-Markovianity measures and their operational signatures, see [61].

Figure 3.12 collects these observations. Panel 3.12a shows time-domain concurrence
traces in the Markovian regime, where the decay slows as 'yf increases and approaches the
limiting case set by the individual dephasing of the Qubit and Ancilla when the Environment
is effectively uninvolved. Panel 3.12b shows the extracted I', versus fyf across both regimes.
In the non-Markovian region (gray) I increases as revivals are suppressed; in the Markovian

region I'. decreases with further increases of yf , consistent with the quantum Zeno effect.
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Fig. 3.12: Non-Markovianity and Quantum Zeno transition. (a) Qubit—Ancilla con-
currence versus time for different Environment dephasing rates; as 'yf increases,
the decay approaches the uncoupled limit given by the Qubit and Ancilla single-
qubit dephasing. (b) The exponential decay rate of the concurrence, I, versus
'yf . The gray region denotes the non-Markovian regime, where I'. is obtained
from fits to the (non-monotonic) envelope; in the Markovian regime I'. follows
the expected Zeno scaling (red line).

Zeno scaling and the pinning limit. On exact resonance, the coherent exchange be-

tween the Qubit and Environment is generated by
Hy = g (UEUC_Q + 0505) , = Qo.e ~ 29, (3.18)

where Qg g is the exchange (Rabi) frequency of the Qubit-Environment subsystem. In
the Zeno picture, rapid dephasing of the Environment (frequent effective measurement)
suppresses coherent exchange, leading to the inverse-rate scaling

Q7 1 1
Q.E —
FC = 475 + FO, FO = ﬁ + W, (319)
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which we observe at large ’yf (86, 89]. Here I'y is the baseline concurrence decay rate in the
absence of Environment-mediated exchange. Importantly, the disappearance of oscillations
at intermediate ’yf indicates a loss-dominated, still-coupled manifold; it does not by itself
imply full decoupling. Only at very large %f does Zeno pinning confine the Environment to
pointer subspaces, suppressing the effective Qubit—Environment coupling and approaching

the decoupled limit [67].

Conclusion. By sweeping 75 and jointly tracking the non-Markovianity measure and the
fitted envelope rate I'., we map a continuous crossover from non-Markovian dynamics (re-
vivals, memory) to Zeno-stabilized Markovian dynamics (single-exponential decay) using an
entanglement-assisted probe. The probe is sensitive to quantum memory in the Environment:
a classical environment that stores populations but lacks coherence would not generate con-
currence revivals, in line with canonical non-Markovianity criteria [61]. This capability is
useful for testing the quantum nature of decoherence channels (e.g., in quantum-gravity—mo-
tivated scenarios [90]). Moreover, by introducing controllable dissipation to the Environment,
we observe stabilization of the Qubit—Ancilla subsystem, underscoring dissipation as a pow-

erful tool for quantum subspace engineering [51].
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Non-linearity and Amplification

The detection and measurement of quantum systems pose unique challenges that funda-
mentally differ from classical measurement techniques. A typical qubit state in a quantum
non-demolition (QND) measurement involves only ~1-10 photons circulating in the read-
out resonator. Such weak signal energies make direct measurement with room-temperature
electronics impractical, as the signal power is often several orders of magnitude below the
thermal noise floor at 300 K. This limitation establishes the essential role of amplification
in quantum measurement chains. Amplifiers not only enhance the desired signal but also
inevitably amplify any existing noise within the system. Furthermore, the amplification
process itself introduces additional noise, as illustrated schematically in Fig. 4.1. At first
glance, it may appear counterintuitive that amplification could degrade the signal-to-noise
ratio (SNR); after all, if both signal and noise are amplified equally, one might expect the
SNR to remain constant. However, the key advantage of amplification is that it raises
the signal power above the noise floor of subsequent measurement stages. Without
an initial low-noise amplifier, a weak quantum signal would remain indistinguishable from
the background noise of downstream components. By boosting the signal, even at the cost
of adding some noise, the relative signal power at later stages increases, making it more

discernible to room-temperature detectors. In practice, the first-stage quantum amplifier
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determines the overall sensitivity of the entire measurement chain.

The quantitative impact of added noise and gain distribution in a cascade of amplifiers
can be understood through the Friis equation (Eq. (4.2)), which expresses the total noise
figure of a multi-stage amplification chain. The noise figure F' of a two-port is

SNR;,
F =
SNRout

> 1

9

Output signal

G -Sinput
S Input signal
e VANV *
+ Output noise G. Tinput
Tinput Input noise
+ TAmp

Added noise

Fig. 4.1: Basic operational principle of an amplifier: the input signal, along with
its inherent noise, is amplified to a level well above the noise floor of subsequent
stages. Additional noise introduced by the amplifier is also shown schematically.

and in a cascade amplifier arrangement, the total noise figure obeys the Friis formula

-1 -1
2 L1

Fiow = F
tot 1+ G, eNer +

(4.2)
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with G; the (power) gain of stage ¢ [91]. In the equivalent noise-temperature form,

T T
Tss:T -
=t et GG,

o (4.3)

so large first-stage gain suppresses the contributions of all following stages. Classically,
the input noise floor is kg7T'B (per unit bandwidth B) and gets multiplied by the gain, while
internal resistive and device noise adds in quadrature via (4.2)—(4.3).

For example, a cryogenic high-electron-mobility transistor (HEMT) still exhibits excess
noise from carrier scattering and tunneling processes. But even at 4 K—the temperature
at which HEMTs are typically operated in a quantum computing environment—the thermal
noise overwhelms any quantum fluctuations. But what happens at sub-millikelvin temper-
atures, when the amplifier has zero resistivity? That is where quantum amplifiers operate.
The knowledge of quantum limitations becomes more useful here, since T} now corresponds
to the noise temperature of a quantum-limited amplifier, and any noise dictated by quantum
phenomena becomes comparable to the thermal noise. We will study the quantum limit

imposed on the amplification process.

4.1 Quantum Amplification

Noiseless, phase-preserving amplification of an arbitrary quantum state would effectively
copy both quadratures without disturbance. That runs headlong into the no-cloning theorem:
a physical (linear, CPTP) map cannot duplicate unknown states. The only consistent way
for a deterministic phase-preserving amplifier to exist is to add noise so that information
is not duplicated perfectly and the map remains linear. This intuition is formalized by

the Haus—Caves limit. To quantitatively understand it, we should look at the process of
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amplification. We work with bosonic operators obeying [a,a'] = 1. A naive single-mode
rescaling aou = VG ai, violates the commutator unless G = 1[92, 93]. This forces either (i)
a second idler mode (phase-preserving case), or (ii) mixing a mode with its own conjugate

(phase-sensitive case).

4.1.1 Phase-preserving (nondegenerate)

Postulate the most transparent linear map with an arbitrary idler amplitude gain g;:

Qs,out = \/Eas,in + i ei¢ a;'r,inv (44)
and assume [as in, @i in] = [@sin, a;in] = 0 (distinct modes). Imposing the canonical commu-
tator at the output,

!
[as,outv ai,out] = G [ in, a’l,in} - |gi|2 (@ jn, a;r,in] =G — |gi|2 =1, (4.5)

fizes the idler amplitude gain to

l9il = VG — 1. (4.6)

Thus the physically allowed, commutation-preserving input—output relation is
as,out = \/Ea's,in + v G —1 6i¢ a“z,im G Z 17 (47)

which is exactly the standard form usually obtained via a Bogoliubov parametrization [92—
94]. Define signal quadratures I, = (as + al)/2 and Q, = (a, — al)/(2i). Equation (4.7)
amplifies both I, and Q by the same amplitude factor VG (up to a global rotation set by

®), so their relative phase is unchanged—hence the name phase-preserving amplification.
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4.1.2 Phase-sensitive (degenerate)

For a degenerate parametric amplifier (DPA), there is no independent idler mode. Work
directly in quadratures and assign arbitrary amplitude gains /G and /G to the two

conjugate quadratures:

[out =V GI [ina Qout =V GQ Qin' (48)

To preserve the canonical commutator [/, Q] = i/2, we require

VGiGg 1 1
[[outa Qout] =V GIGQ [[ina Qin] =1 —IQ =1 57 (49>

2

which fizes the product of the gains:
GrGg =1 (4.10)

Choosing the device phase so that X is the amplified quadrature (G; = G > 1) gives the
unique companion gain

Thus a DPA necessarily amplifies one quadrature and deamplifies (compresses) the orthog-

onal one:

1
Iout = \/5Iin7 Qout = ﬁ Qin- (412)

In annihilation-operator form this is equivalent to

VG + = VG - 75
- Y, V& (4.13)

i6 ,f
2 2

Gout = M Gin +VE inn M=

78



Chapter 4. Non-linearity and Amplification

which indeed satisfies |u|? — [v|*> = 1 and reproduces Eq. (4.12) [93, 95].

Added Noise in Each Case In a phase-preserving amplifier, the extra, independent
idler port must inject vacuum fluctuations to keep [aout, &iut] = 1. That vacuum is the entire
origin of the added noise. From a oy = VG a0 +VG — 1 ei‘ba;in (fixed by the commutator),
the idler contributes (G — 1) x Var(vacuum) to the output variance per quadrature. With
Var(lya.) = Var(Qyae) = % and noise units S = 2 Var (so vacuum is Sy, = % “quanta per

quadrature”), the input-referred added noise is simply
(G - 1) Svac G-1 G>1 1

N(PP) _ _ .
add G 2G 2

The idler’s vacuum is exactly the added noise, and in the large-gain limit it amounts to half a
quantum per quadrature (the Haus—Caves limit) [92, 93]. By contrast, in the phase-sensitive
(degenerate) case there is no independent idler; properly phased, one quadrature (say /) can

be amplified with zero added noise while the orthogonal quadrature @ is squeezed [93, 95].

4.2 Parametric Amplifier

A parametric amplifier is an amplifier in which work is supplied by modulating a circuit pa-
rameter—typically a reactive element such as an effective capacitance or inductance—at
a pump frequency. A strong pump performs this parametric work; a weak input sig-
nal then draws energy from the pump via the time-dependent reactance, resulting in gain
[ManleyRowe1956, 95].

We begin with the classical small-signal picture, modeling a resonator whose reactance
is modulated at (or near) a combination of the signal and idler frequencies. This viewpoint

makes the basic features transparent: the gain—detuning dependence emerges from the lin-
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earized equations of motion and phase matching, and the familiar gain—bandwidth trade-off
follows from how parametric coupling loads the resonator’s response [93, 94]. We then turn
to the quantum description, where amplification is conveniently viewed as photon conver-
sion mediated by the pump: in three-wave processes a pump photon splits into a signal-idler
pair, while in four-wave processes two pump photons convert into one signal and one idler.
This perspective naturally explains phase-preserving versus phase-sensitive operation and
the fundamental noise constraints (e.g., the Haus—Caves limit for phase-preserving gain) [92,
93]. Practically, two pumping modalities are common: (i) three-wave mizing (explicit mod-
ulation of a reactance at w, ~ ws + w; or 2w;), and (ii) four-wave mizring (Kerr-mediated
self-modulation by a strong pump near the mode frequency). We will use the classical model
to build intuition for gain versus detuning and the gain—-bandwidth product, and then for-
malize these results in the quantum picture, where energy flow and noise are accounted for

at the photon level [93-95].

4.2.1 Classical picture

A parametric amplifier is a resonant circuit whose natural frequency is periodically modu-
lated by an external pump. Classically, such a system can be modeled as a damped harmonic
oscillator with a time-varying resonance frequency (Fig. 4.2). Let the instantaneous angular
frequency be modulated as

w?(t) = wg + acos(Qt), (4.14)

where wy is the static resonance frequency, €2, is the pump frequency, and « sets the modula-
tion depth (pump strength). Including a damping term &, which characterizes the linewidth

(or bandwidth) of the resonator, the equation of motion reads
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‘ Fs cos(wgt)
=

\

]
4

A cos(wst + @)

a cos(Qpt)
Cme———)

Fig. 4.2: Classical parametric amplfier: A Fabry-Pérot cavity used as a parametric
amplifier: a tunable cavity in which one boundary condition is varied in time by
an external pump. A weak signal is coupled in through a partially transmitting
boundary.

#(t) + ki) + |0 +a Cos(th)] 2(t) = F, sin(wgt), (4.15)
where x(t) is the generalized coordinate (e.g., voltage or current), and Fj sin(wst) represents

a small input drive at signal frequency ws.

4.2.2 Small-signal steady-state solution

We seek a steady-state solution of (4.15) in the presence of a weak pump and a small signal

near resonance (|ws; —wg| < wp). For the degenerate case €2, = 2wy, we write the motion as
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a slowly varying envelope on the carrier:

w(t) = X(t)e™st + X*(t)e ™!, (4.16)

where X < w,X. Substituting into (4.15) and retaining only near-resonant terms (rotating-

wave approximation) yields the coupled envelope equations

« F,

S0+ ) x4 Sxr = s 41

( ’ +2> 3 %o’ (4.17)

(+i0+S) X"+ Sx = - Fs (4.18)
2 27 2wy’ '

where 2 = wy; — wy is the detuning. These equations describe coupling between the signal

and its phase-conjugate “idler” component through the pump modulation.

4.2.3 Frequency-dependent gain

Solving (4.17) for X under steady-state drive gives the complex response and the power gain

for the amplified quadrature as

)P0

543
| (4.19)

This expression is valid below the parametric threshold o < k. At zero detuning (2 = 0),

the on-resonance gain simplifies to

(4.20)

Q

o

|
VR
NIRRT A
||+
|2 [ro]Q
\_/[\3
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Beyond the linear model. In deriving Eq. (4.20) we assumed a single mode, constant
« (undepleted pump), and negligible higher-order nonlinearity. As a— £ the linear solution
becomes marginally stable; in experiment one encounters either (i) the onset of parametric
self-oscillation or (ii) gain compression due to Kerr nonlinearity and pump depletion, with
internal loss and phase mismatch further rounding the response. These effects replace the
divergence with a finite peak gain and define the dynamic range (e.g., the 1dB compression

point).

4.2.4 Gain—bandwidth product

The amplifier bandwidth is defined by the detuning {2345 at which the gain drops by half:

G (Qap) = % (4.21)

Substituting Eqs. (4.19) and (4.20) into (4.21) and solving for Q2345 yields

Go K«
U= 1\a 25 (5 3) (422)

In the high-gain limit (Go > 1), this simplifies to

K

VGo

Q3dB ~ (423)

Expressed in linear frequency (B = 345/27), the classical amplitude gain-bandwidth prod-

uct becomes

K wWo
VG B~ — = 4.24
0 27 27TQL, ( )

where Q1 = wp/k is the loaded quality factor of the resonator.
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Interpretation. Equation (4.24) shows that for a resonator-based parametric amplifier,
the product of amplitude gain and bandwidth is constant and determined by the resonator
linewidth. As the pump strength « increases, the gain rises but the bandwidth narrows
proportionally to 1/4/Gy, so the overall gain-bandwidth product remains fixed. This trade-

off is fundamental to all linear parametric amplification processes.

4.2.5 Quantum picture

Any parametric amplifier requires a nonlinear element to respond to an external drive and
modulate the frequency of the resonator. In superconducting platforms, Josephson-junction
devices are the most widely used nonlinear elements, as they can be modeled as a nonlinear
inductance.

The inductance of a superconducting quantum interference device (SQUID), denoted L,
is periodic in the external magnetic flux ®ey, with a period of one flux quantum &y = h/2e.

This nonlinear inductance arises from the Josephson effect and can be expressed as

Do

LJ((I)ext) - ;
271, cos (W%;‘“)

(4.25)

where I, is the critical current of the SQUID junctions, @ is the magnetic flux quantum, and
®. is the applied external flux. The cos(mPey/Po) term encodes the flux dependence, giving
rise to a tunable inductance and hence a tunable resonance frequency when incorporated
into an LC' circuit. This periodicity originates from the interference of superconducting
wavefunctions in the SQUID loop, a direct manifestation of the Josephson effect [96].

When the SQUID inductance is placed in parallel with a capacitance C', the resonance

84



Chapter 4. Non-linearity and Amplification

frequency of the circuit is given by

1
Wy (Pext) = m (4.26)

By modulating ®.,, the resonance frequency of the LC' circuit can therefore be tuned
with high precision, making the SQUID a versatile tool for parametric amplification. Using
this relation, one can plot the resonance frequency as a function of external flux, as illustrated
in Fig. 4.3. The points labeled symmetric and asymmetric are of particular significance in
amplifier operation. At the symmetric point (Pey, = 0), the pump frequency is approximately
equal to the resonance frequency, and amplification arises from a four-wave mixing process.
In contrast, at the asymmetric point (e = 0.25®)), the pump frequency is approximately
twice the resonance frequency, and amplification occurs via a three-wave mixing process
97].

To understand the quantum picture of a parametric amplifier, we begin with the Hamil-
tonian of a tunable LC' resonator:

N
H(t)_zL(t)Jr%’

(4.27)

where: (;3 is the flux operator, Q is the charge operator, L(t) is the time-dependent inductance,
C is the capacitance. This Hamiltonian describes the energy of the resonator in terms of
its quantum-mechanical degrees of freedom. The flux operator gg and charge operator Q
satisfy the canonical commutation relation [(ﬁ, Q] = ih, reflecting their conjugate nature
in the quantum regime [98]. The time-dependent inductance L(t) introduces parametric

modulation, which is essential for amplification. We can rewrite the Hamiltonian in terms of

the instantaneous frequency w(t) of the resonator, which is a function of the applied external
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Symmetric point

$o/4 /

Asymmetric point

—do —¢o/2 0 ¢bo/2 $o

¢ext

\ 4

Fig. 4.3: (Frequency vs. Flux): Resonance frequency versus external magnetic flux for a
SQUID-tuned LC resonator. The symmetric point (green) corresponds to zero ex-
ternal flux, where the pump frequency matches the resonator frequency, enabling
four-wave mixing. The asymmetric point (red) corresponds to ®e = 0.25P,
where the pump frequency is twice the resonator frequency, enabling three-wave
mixing. The periodic dependence of the frequency on &4, reflects quantum inter-
ference effects in the SQUID loop.

DC flux bias and the pump tone via a small AC fluz ¢(t) around Ppc:

H(t) = CWTQ@) &+ % (4.28)
with
Doy (t) = Ppe + o(t), w(t) = w(Pext(t)). (4.29)

For small oscillations, expand the frequency about the bias point and neglect higher orders:

0w

1
W(t) ~ Wy + wl’, qb(t) + 50)[/7/ ¢2(t), Wy = w(cb])c), w; =

QU|Q3
& &

Ppc Ppc
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In a rotating frame of reference with respect to the input signal frequency, both the flux

and charge operators can be expressed in terms of the mode’s creation (a) and annihilation

. h A hCw
- o+ af = —i4/ o —at
o) ST (a+a"), Q i 5 (a—a"). (4.31)

Here, we are considering the simpler case where the input and idler modes are degenerate

(@) operators:

and can be represented by the same photonic modes. Substituting (;AS, Q, and the w(Ppc+ )

expansion back into the Hamiltonian, we obtain (up to a constant):

/ "

H(t) = hwyala + Z 20 o(t) + 2 (1) | (a+ ah)?. (4.32)

Wh Wh

In this Hamiltonian, the first term represents the energy of a simple harmonic oscillator.
The second term is responsible for the creation of signal photons by down-converting pump

photons and vice versa.

4.2.5.1 Four-wave mixing

When the amplifier is operated close to zero DC flux bias, the first-order derivative of fre-
quency with respect to the pump tone vanishes (Fig. 4.4a) (w, ~ 0). Thus, the Hamiltonian

simplifies to:

B(t) = Dye cos(wyt), wy =0, (4.33)
so that
- h w!
H(t) = hupala + 7 =2 ¢*(t) (aa' + afa + a* + a™). (4.34)
Wh
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Fig. 4.4: AC pumping schemes. (a) Flux pumping when biased at zero flux quanta: the
resonator’s modulation frequency is twice the pump frequency. (b) Flux pumping
when biased near ®,/4 flux quanta: the resonator’s modulation frequency equals
the pump frequency.

With ¢2(t) = 2= [1 4 cos(2wpt)]

/

N h W
H(t) = hani'a + 2 Yo g2 [1 + Cos(2wpt)] (aaf +afa + a2 + af?). (4.35)
Whp

Separating the DC Stark shift and the oscillatory parametric term, and moving to a

frame rotating at w, (RWA), gives

- h
Hywppa = hAsa'a + % (@* +a') (4.36)
with
Wy o Wy o
Ay = wp + 5wStark — Wp, 5WStark = m q)aca g4 = 8w ‘I)aC' (4-37)
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Stationarity of the squeezing term requires 2w, ~ 2w, (degenerate 4WM, i.e., w, =~ wp).

4.2.5.2 Three-wave mixing

If we now bias the resonator at approximately ®pc = ®¢/4 (Fig. 4.4b), the frequency-versus-
flux curve can be approximated as linear for small pump amplitudes. This allows us to ignore

the second- and higher-order derivative terms in the Hamiltonian (4.32), simplifying it to:

A h w!
(1) = hpila + 5 Yo o(t) (aat + ata + a% + a™?). (4.38)
W

Here, we assign 7 to represent the slope of the frequency response with respect to the

flux. Similar to the previous section, we define the pump tone as a monochromatic signal:
o(t) = Puc cos(wpt).

Keeping only near-resonant terms and moving to a frame rotating at w,/2 (RWA), the

Hamiltonian becomes:

- h
Hswppa = hAza'a + % (a*+a') (4.39)
with
w wh
Aa =y — 2 = @, 4.4
3 = Wp 9 gs Lo, ( 0)

Because the modulation is asymmetric, the resonance frequency oscillates both above and
below the assigned DC bias, resulting in a net zero average frequency shift due to the pump
modulation. This removes one tuning parameter—the pump detuning. From the above
Hamiltonian, it is clear that the pump frequency must be twice the resonance frequency

(wp = 2ws & 2wp). In this process, one pump photon is converted into a signal photon and
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an idler photon, a mechanism known as three-wave mixing. This type of amplification is

highly sought after due to its simplicity and efficiency.

Connection to Non-Hermitian Physics

The above Hamiltonians will reappear in the next chapter, where they will be used to explore
non-Hermitian physics. Non-Hermitian Hamiltonians are essential for describing open
quantum systems, where gain and loss mechanisms play a significant role. The three-wave
mixing process, with its inherent simplicity and well-defined photon-conversion dynamics,

provides an ideal platform for studying such phenomena.

4.3 Superconducting Flux-Driven JPA

An experimental flux-driven JPA was designed and tested. This type of amplifier is capable of
operating through both three-wave and four-wave mixing processes to achieve amplification.
The device under consideration was first developed using finite element method (FEM)
simulation software; the specific simulation techniques and design challenges will be discussed
in detail in a later chapter. For now, we focus on the main aspects of the design without
delving into the full design process.

The amplifier consists of an LC resonator weakly coupled to a 50-§2 environment. In
addition to the linear inductance, the resonator incorporates a nonlinear inductance provided
by four SQUIDs connected in series. These SQUIDs are inductively coupled to a broadband
transmission line, which serves as the flux-pump line. A GDS layout of this system is shown
in Fig. 4.5.

The main advantage of the above device is its simple yet effective design, which can be

fabricated using a single-layer double-angle deposition process. The device was subsequently
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’ —uwu—l
SQUID array

Fig. 4.5: Flux-driven JPA: (a) The complete GDS layout showing the LC' resonator (red
box) and the SQUID array (black box). (b) Zoomed-in view of the SQUID array.

fabricated and packaged, with appropriate connections made to a PCB launch using alu-
minum wire bonds (Fig. 4.6a). The on-chip flux line can also be used to apply a DC bias to
the chip.

The experimental setup and design parameters are discussed in the following sections,
followed by the measurement of gain as a function of pump power. The results demonstrate
the effectiveness of the three-wave mixing process in achieving parametric amplification.

The design parameters are as follows for this JPA: SQUID loop inductance: L; =
0.51nH, Total linear inductance: L ~ 0.92nH, DC external flux applied: ¢/¢q ~ 0.22, Ca-
pacitance: C' =~ 1.08pF, Resonant frequency: wy/27m ~ 4.338 GHz, Pump frequency:
w,/2m ~ 8.676 GHz, Coupling capacitance: C. ~ 0.42pF.

The amplifier is cooled to millikelvin temperatures in a dilution refrigerator to ensure
superconducting operation (Fig. 4.6b). The input line includes approximately 60 dB of atten-

uation, while the pump line has about 50 dB. Both the input and output lines are equipped
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Fig. 4.6: Experimental setup: (a) Final wire-bonded chip inside a package. (b) Dilution-
refrigerator setup for the measurement of the JPA.

with low-pass filters to suppress pump-tone leakage into the output path. The microwave
cable between the JPA input and the circulator is kept as short as possible, since excessive
cable length increases ripples caused by impedance mismatch. We then measure the Sy,
parameters of the amplifier around the resonance frequency. The input signal is applied at
the resonance frequency, while the pump tone is applied at twice the resonance frequency to
enable three-wave mixing.

The resulting gain response for different pump powers is shown in Fig. 4.7. The over-

all bandwidth achieved by this JPA was approximately 174 kHz. However, with careful
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impedance-matching techniques, the bandwidth can be extended up to the GHz range in

multipole-matched circuits.

15 —— Pwr = -56.3dBm
—— Pwr = -54.2dBm
—— Pwr = -52.9dBm
~— Pwr = -52.0dBm
—— Pwr = -51.2dBm
—— Pwr = -50.6 dBm
= Pwr = -50.2dBm
—~ 10 49.9 dBm
o)
o
c
‘©
O
5
0 AR
T T T T T
4.336 4.337 4.338 4.339 4.340

Freq (GHz)

Fig. 4.7: Gain versus pump power for a flux-pumped parametric amplifier operating
via three-wave mixing. The gain increases with pump power until it saturates at
higher power levels. The solid line represents the theoretical prediction based on
the Hamiltonian derived in Chapter 2.

Intuition

Here, we explore the intuitive workings of a parametric amplifier and how it amplifies a
signal. As discussed in earlier sections, parametric amplification relies on nonlinearity
to coherently convert pump photons into signal photons. This process is fundamental to
achieving amplification in quantum systems and classical systems alike [92, 93].

Initially, when the signal strength is weak, the resonator plays a crucial role by provid-
ing the necessary delay for signal photons to become trapped and interact with the pump

photons. This interaction is mediated by the nonlinear medium, which enables energy trans-
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fer from the pump to the signal. These processes are governed by energy and momentum
conservation laws, ensuring that the frequency and phase relationships between the pump,
signal, and idler photons are preserved [99].

It is important to note that the reverse process is also possible: a signal photon and
an idler photon can mix and upconvert into a pump photon. This upconversion process
can stall the amplification if it becomes significant. However, in practice, the abundance
of pump photons ensures that the downconversion process (amplification) dominates over
upconversion. This dominance persists until the rates of upconversion and downconversion

become comparable, at which point the amplification process begins to degrade.

4.4 How to Design a Good Amplifier

The first device we built demonstrated basic parametric gain but was far from optimal for

practical use. In designing a JPA, three application-driven properties dominate:
1. Instant tunability via DC flux.
2. Pump coupling efficiency.
3. Bandwidth allocation.

Which of these you optimize depends on the target experiment. For example, some readout
chains do not require large bandwidth but benefit from a very wide, fast tuning range; others
must read out many qubits simultaneously and therefore demand GHz-scale bandwidth.
Efficient pump coupling minimizes on-chip dissipation and eases thermal loading. Below we
outline how each feature is tuned, with pros and cons, to make the trade-offs explicit [93,

94].
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4.4.1 Tunability of a JPA

To understand the tunability and sensitivity of the JPA, we define the nonlinearity (Joseph-
son participation of the inductance)
Ly
= = 4.41

where Ly is the linear (geometric) inductance and L sets the scale of the effective Josephson

inductance. For a symmetric SQUID,

_ Ly
B }cos(w@ext/d)())} ’

Lj(Pext) (4.42)

so the total inductance is Lo (P) = Ly + L;(P). With capacitance C', the mode frequency is

mll = (4.43)

w<q)ext) \/Lg_c

1
a \V Ltot<q)ext) O a \/1 + |
CO

n
S(']Tq)ext/@o) |

Slope (sensitivity) to flux. Let x = 7®q /Py and, for 0 < z < 7/2, drop the absolute
value. From (4.43),

1 do  1pysing 7/ ®g ‘ (4.44)
W AP oyt 2 cos’z 1+n/cosz
At the commonly used bias x = 7/4 (Peyxy = Po/4; sinz = cosx = ‘/75),
1 d 2
ld _ T L. (4.45)
w dq)ext Dy /4 200 1 + 7]\/§
Thus increasing 7 boosts tuning sensitivity near ®/4 but saturates to ﬁ as 17— 00.
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Tuning range examples. The fractional frequency between two flux biases x, zo follows

w(xz) | 14n/cosx
w(zy) \/ 1+mn/coszy (4.46)

Taking zy = 0 and x, = /3 (i.e., cosay = 3):

directly from (4.43):

w@/3) [ 1+4mn . (4.47)
w(0) 1+2n
Numerically,
n=0.55: w(r/3)/w(0)~0.86 (~ 14% drop), (4.48)
n=4: w(r/3)/w(0) 2~ 0.745 (~ 26% drop). (4.49)

So pushing 7 from 0.55 to 4 yields substantially larger tunability over practical bias ranges
(e.g., around ®q/4-P(/3). Larger n increases the Josephson participation p = L;/(Ly+Ly) =
n/(14n), which strengthens the effective Kerr nonlinearity. While this improves tunability,
it lowers the 1dB compression power Pjgp (dynamic range degrades roughly as nonlinearity
grows). One straightforward way to increase nonlinearity is to add more SQUID elements
in series and use the inductance from the SQUID array (Fig. 4.8c) instead of the linear
inductance of the resonator. Adopting a fractal capacitor also reduces the parasitic linear
inductance introduced by the planar capacitor in the JPA design. In practice, n must be

chosen to balance tunability against compression for the target application.

96



Chapter 4. Non-linearity and Amplification

4.4.2 Current coupling vs. flux coupling

Parametric modulation in a JPA can be realized in two ways: (7) flux pumping away from zero
flux bias to activate three-wave mixing (3WM), and (i) current (amplitude) pumping near
zero flux bias to activate four-wave mixing (4WM). Current-pumped devices often require
no dedicated pump line: the strong pump tone is injected via the weak (signal) port and still
yields gain through the Kerr (4WM) nonlinearity. By contrast, a flux-pumped device needs
a separate line that couples magnetically (mutual inductance) into the SQUID loop to drive
the 3WM process [93, 94]. Ideally, the flux line couples purely inductively to the SQUID
array (no electric coupling to the resonator). In practice, stray capacitance between the flux
line and the resonator is difficult (often impossible) to reduce to zero. The consequence is
twofold: (i) the intended fluz drive produces 3WM when biased away from zero flux; (ii)
the unintended capacitive drive injects coherent current through both junction arms in the
same direction, generating an AC Stark (Kerr) shift that detunes the JPA away from its
chosen bias point. If the capacitive coupling dominates the flux coupling, the resonance
shifts appreciably before appreciable gain develops, making calibration difficult and, in the

extreme, the device unusable.
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Fig. 4.8: Novel flux-line design. (a) Image of the split flux-line geometry. (b) Zoomed-in
image of the flux line. (c) SQUID array.

Mitigation I: increase flux coupling (mutual inductance). A direct lever is to in-
crease the mutual inductance M from the flux line to the SQUID loops. We adopted a
split-flux-line design that wraps the line around the SQUID array (Fig. 4.8a,b), effectively
doubling the loop linkage and boosting M. An additional advantage of the split geometry
is interference control: by choosing the termination of the second arm appropriately, one
can engineer destructive interference for resonator leakage through the pump path, reducing

pump-line radiation loss.
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Fig. 4.9: Inductive vs. capacitive coupling. Schematic comparison of (left) purely
inductive coupling and (right) purely capacitive coupling between the flux line
and a SQUID arm. (c) Simulated current flowing in one SQUID inductor for
capacitive (orange) and inductive (blue) coupling.

Mitigation II: reduce capacitive coupling. To suppress capacitive feedthrough, mini-
mize the flux-line electrode area and its overlap with the resonator traces, increase separation,
and avoid broad ground-referenced pads near the mode’s voltage antinodes. A complemen-
tary tactic is to float the JPA resonator (no shared ground plane with the flux line), which
strongly reduces parasitic capacitance between the line and the mode.

Consider the two limiting couplings sketched in Fig. 4.9a: purely inductive versus purely

capacitive drive of one SQUID arm. With increasing frequency w, |Z;| = wL grows while
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|Zc| = 1/(wC) shrinks. Accordingly, the relative current (Fig. 4.9¢) induced by capacitive
feedthrough increases with w, while the effectiveness of inductive (flux) drive diminishes.
Above a device-specific crossover, capacitive injection inevitably dominates unless its para-
sitic coupling is made vanishingly small.

At microwave frequencies where capacitive feedthrough is hard to suppress, one can
eliminate the flux line altogether and embed the required 3SWM asymmetry in the nonlinear
element. Asymmetric multi-junction loops (SNAILS) generate a strong cubic nonlinearity at
a fixed DC flux; the amplifier is then pumped through the weak port near 2wy (or ws + w;),
achieving 3WM gain while avoiding a flux-line capacitive path [93, 94, 100]. This approach
is therefore preferred for higher-frequency 3WM designs where maintaining purely inductive

pump coupling is impractical.

4.4.3 Impedance-matching techniques

Up to this point, we have considered a simple Josephson parametric amplifier (JPA) con-
sisting of a single resonator, coupled to the weak (reflection) port through a single coupling
capacitor. In this basic configuration, the small-signal gain spectrum follows a Lorentzian
response, characteristic of a first-order (single-pole) resonant system with loaded quality

factor @, [101, 102]. A convenient single-pole transfer function is

Hw) = ——prr  H@)P = 1

o — TN (4.50)
L+ R/Q 1+4( 0)

K

with resonance wy, total linewidth k = wy/Qr,, and a Lorentzian power response.
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Fig. 4.10: Impedance-matched amplifier. (a) First-order JPA circuit. (b) Second-order

JPA circuit. (c) Gain response of first-order (yellow) and impedance-matched
(green) JPAs.

Impedance engineering with higher-order matching. Replacing the single coupling
capacitor by a matching resonator raises the overall order from one pole to two poles. More

generally, an N-pole network has

H(w) = H;—w’ (4.51)
n=11+j /2”

where the pole locations {w,, k,} can be engineered to yield a flatter passband and sharper

skirts, closely paralleling classical microwave filter synthesis (e.g., Butterworth/Chebyshev
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prototypes) [103-105]. In reflection-mode JPAs, such impedance-engineered matching net-
works (resonant or transformer-based) have been shown to expand instantaneous bandwidths
while maintaining near-quantum-limited noise performance [106-108].

This bandwidth enhancement comes with a trade-off: to achieve the same peak gain
at larger external coupling (lower (J,), the required pump amplitude increases [101, 109].
Fundamentally, these trade-offs are consistent with Bode—Fano limits on matching reactive

loads over a finite band [110-112].

Single-pole example. An example single-pole JPA resonator is shown in Fig. 4.10a, with

C, =146 fF, C =670fF, L, =0.9nH.

The corresponding gain response is plotted in Fig. 4.10c (yellow curve) and exhibits the

expected Lorentzian shape.

Two-pole example with a matching resonator. Figure 4.10b illustrates a two-pole
configuration in which an additional resonator is capacitively coupled to both the JPA res-

onator and the reflection port:

Ca=1801F, Cno=3301F, L,=168nH, L;=09nH, C,=3251{F, C =3251{F.

The resulting gain (green curve in Fig. 4.10c) displays a much broader, flatter top—ap-
proximately ~ 400 MHz of bandwidth versus ~ 10 MHz for the single-pole design—with a
correspondingly higher pump requirement (about x9) to maintain similar peak gain, consis-

tent with the reduced @y, of the broadband match [105, 106].
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Beyond two poles. By cascading additional resonant stages or using wideband transmission-
line transformers (e.g., Ruthroff-type) to transform the effective source impedance seen by
the nonlinear resonator, one can realize multi-pole responses with wide, well-controlled pass-
bands and low ripple [103, 104, 113]. Such impedance-engineered JPAs are now routinely

explored for broadband qubit readout and multiplexed measurements [105-108].

Conclusion In this chapter, we examined how amplification enables the detection of weak
quantum signals and how its fundamental limits shape device performance. We showed that
while phase-preserving amplifiers must add at least half a quantum of noise, phase-sensitive
operation can amplify one quadrature without added noise.

We derived the classical gain and gain—bandwidth trade-off for parametric amplification
and connected it to the quantum picture through three- and four-wave mixing processes.
A practical flux-driven JPA was designed, fabricated, and measured to demonstrate these
principles in experiment.

We also outlined key design trade-offs—tunability, pump coupling, and impedance engi-
neering—that determine performance in real systems. These design considerations provide a
flexible framework for tailoring JPAs to specific experimental requirements, from narrowband
high-gain operation to broadband, impedance-matched amplification.

In the next chapter, we build on this foundation by using one of the devices developed
here to explore non-Hermitian physics in the quadrature space of the JPA. By
tuning gain, loss, and coupling parameters, the same parametric processes that enable am-
plification will be harnessed to study exceptional points and engineered gain—loss dynamics

in a controlled superconducting platform.
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Non-Hermitian Systems and

Parity—Time Symmetry

5.1 Introduction to Hermitian and Non-Hermitian
Systems

In every closed system, due to its isolation, energy cannot be added to or removed from
the system. Such systems are described by Hermitian Hamiltonians, which have real
eigenvalues and conserve energy over time. The Hermitian property ensures that the system’s
dynamics are unitary, meaning the total probability is preserved, and the system evolves in
a predictable and reversible manner [114].

A simple example of a Hermitian Hamiltonian is the two-level system

. E, VvV
HHermitian = ; (5 1 )
V*  Ey

where E; and FEs, are real energy levels, and V' is the coupling between them with V* =V

ensuring Hermiticity. Since Hyermitian = Hﬁermitian, the eigenvalues are always real, repre-
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senting physically observable energies, and the time-evolution operator e—iHt/h g unitary.
However, in reality, no system is perfectly isolated. Every system is in fact a subsystem em-
bedded within a larger environment, and interactions with this environment lead to energy
exchange, dissipation, and decoherence. A Hermitian Hamiltonian can be assigned when
the information decay rate is significantly smaller than the system’s study timescale. For
example, consider a qubit coupled to a readout resonator, as discussed in previous chapters.
The qubit loses information due to dispersive coupling with the resonator, but if the Purcell
limit (the rate at which the qubit decays into the resonator) is on the order of 1 ms, then for
a fraction of that time (e.g., 100 us) the qubit can be effectively described using a Hermitian
Hamiltonian [5].

When the system’s interaction time is comparable to its decay or gain timescale, the
Hermitian description breaks down. In such cases, we assign a non-Hermitian Hamil-
tonian that includes appropriate decay and gain terms. Non-Hermitian Hamiltonians are
characterized by complex eigenvalues, which reflect the system’s dissipative or amplifying
nature, and are broadly used to model open quantum systems where energy and information

exchange with the environment is essential [43].

A canonical example is

~ E1 - Z’}/l Vv
Hnon-Hermitian = ; (52)
% Ey +ivy,

where v; > 0 is the decay rate of the first level and v, > 0 is the gain rate of the second

2 At .17 . . .
level. Here Hon-Hermitian 7 H pon fermitians Yiclding complex eigenvalues whose imaginary parts

on-

describe exponential growth/decay of probability amplitudes.

Non-Hermitian systems are relevant across quantum optics, condensed matter physics,
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and quantum information science. In quantum optics, they describe laser systems where
gain and loss are central to coherent light generation [115]. In condensed matter, non-
Hermitian models capture topological phases and exceptional points, where eigenvalues and
eigenvectors coalesce, producing unique phenomena [116]. In quantum information, such
models help capture decoherence and dissipation in qubits, enabling strategies to mitigate

noise and improve device performance [93].

5.2 Parity—Time (PT) Symmetry

A PT-dimer is the simplest non-Hermitian system that still captures the key features of
parity-time symmetry: two coupled modes with balanced gain and loss. This picture is a
special case of the general two-level non-Hermitian model presented earlier (Fig. 5.1). The
system is invariant under parity and time-reversal: parity swaps modes A and B, and time-
reversal exchanges gain and loss. Under appropriate conditions, this special system yields
a real eigenvalue spectrum. The region where the spectrum remains real is called the PT-
symmetric region. PT symmetry was introduced as a compelling paradigm for non-Hermitian
Hamiltonians that can nevertheless exhibit real spectra [117]. Originally developed in the
context of complex potentials, PT symmetry has gained practical relevance with progress in
optics [118].

Coupled-mode PT systems have been widely explored experimentally [119-125]. Of par-
ticular interest are exceptional points (EPs) [126, 127], which offer advantages such as en-
hanced sensitivity [chenl17, 128, 129] and tuning capabilities [130]. Recent work has ex-
tended EP studies into the quantum domain, including superconducting circuits realizing
passive PT symmetry with purely lossy dynamics [131-134], and Hamiltonian dilation ap-

proaches [135] implemented in platforms such as nitrogen-vacancy centers [136, 137].
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In the quantum domain, amplification is constrained by the need to preserve operator
commutation relations, leading to fundamental limits on added noise [93]. Dissipation-free
gain—and thus noiseless amplification—is achievable via squeezing, wherein one quadrature
is amplified while its conjugate is deamplified. In this chapter we realize a PT-dimer in such
a dissipation-free setting [138], using a three-wave-mixing Josephson parametric amplifier
(JPA) [102, 139, 140]. The two quadratures of an electromagnetic mode are mapped to
the gain/loss modes of the PT-dimer, while detuning between pump and resonance couples
the quadratures, enabling observation of PT symmetry breaking in the transient response.
This opens a path to quantum microwave devices that exploit non-Hermiticity and EPs for
non-reciprocity [141], enhanced sensing [142, 143], and exploration of topological quantum

materials [144-148].

(a) (b)

o o
o
[P P B P

+iy/2 g -iy/Z/v 08

Fig. 5.1: The PT-dimer. (a) Two coupled modes with respective gain and loss. (b)
Complex eigenvalue spectrum exhibiting a transition from purely imaginary to
purely real eigenvalues separated by an exceptional point. For this plot, v = 1.
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5.2.1 The PT-Dimer Model

The PT-dimer consists of two coupled modes with equal and opposite gain/loss at rate /2.
Under PT, parity swaps modes A <> B, and time-reversal exchanges gain and loss. Let the

modes be coupled at rate g. The time evolution is

A A
i(?t = HPT ; (53)
B B
with
+iy g gl
Hpr = = g0, +1=0,. (5.4)
. 2
g iy

The eigenvalues are

Ao =£4/g? - (%)2 (5.5)

revealing an “unbroken” PT-symmetric region (g > /2) with real eigenvalues and a “broken”
region (g < 7/2) with purely imaginary eigenvalues. The exceptional point occurs at g = /2,
where Hpr is not diagonalizable and the eigenvectors coalesce [Fig. 5.1(b)]. The tuning
from real to imaginary spectra corresponds to the PT-symmetry-breaking transition. In
the unbroken region, dynamics are oscillatory; in the broken region they amplify /deamplify
according to gain/loss [131, 136]. Near the EP, eigenvalues are highly sensitive to the control

parameter g [128, 149, 150]. The eigenvectors of Eq. (5.4) can be written as

A
o |, (5.6)

9
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which are generally nonorthogonal and coalesce at the EP. Introducing additional control
parameters allows the eigenvalues to become complex (with both real and imaginary parts),
producing a nontrivial Riemann surface. Encircling the EP leads to nonreciprocity [130] and

chiral behavior [151].

5.3 Experimental Implementation with a Flux-Driven
Josephson Parametric Amplifier

We utilize a JPA to realize the PT-dimer physics. JPAs leverage the nonlinearity of Joseph-
son junctions to mix a strong classical pump with weak quantum signals [139]. They are
widely used in circuit QED [5, 152] for quantum-noise-limited amplification and for exploring
quantum nonlinear dynamics [153, 154].

We focus on three-wave mixing: one pump photon at w,, converts into a signal ws and an

idler wj, in the degenerate mode wy = w; = w,/2. In the rotating frame [155],
Hops = dala+ 2 (i — ia?) (5.7)

where 0 = (wp/2 — wp) is detuning from the amplifier resonance wy, v is the pump strength,
and a (a') is the annihilation (creation) operator at the signal frequency. The last two terms
encode three-wave mixing between two signal photons and one pump photon; the pump is

treated as classical.
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5.3.1 Connection to the PT-Dimer Hamiltonian

Although the system is a single bosonic mode, a and a' couple via the parametric drive.

Define the vector |a) = (a,a’)”. The Heisenberg equations are

0ia'(t) = i[Hppa, a'(t)] = ida’ + va, (5.8)
and
da(t) = i[Hppa, a(t)] = —ida + va'. (5.9)
Collecting terms,
o w
0y la) = la) . (5.10)
wo =0

Transform to quadratures I = (a + a')/v/2 and Q = (a — a')/(iv/2), with

I 1 (1 1 al s a (5.11)
1Q V2 1 -1 al al
Substituting into Eq. (5.10) yields
1 w0 1

iQ s —iv] \iQ

This evolution matrix realizes the PT-dimer Hamiltonian: the pump provides coherent
gain/loss and the detuning provides coupling. A PT transition occurs at |§] = |v|. For
|0| > |v| the dynamics are oscillatory (unbroken PT), while for |0| < |v| one quadrature

amplifies and the other is squeezed (broken PT).
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5.3.2 Simulated Results for the Three-Wave-Mixing Process

The time-evolution response of the Hamiltonian in Eq. (5.7) provides a clear framework for
what to measure and how to analyze the experimental results. It also connects the PT-dimer
picture of three-wave mixing to the JPA amplification mechanism [156]. In practice, a weak
signal is coupled to the device to measure the output response. The flux line and the weak
measurement port act as decay channels; together with other dissipation, these are captured
by a Lindblad operator y/ka [157]. For the device studied, we use k/2m =~ 0.19 MHz,
directly obtained from measurements discussed later. Eq. (5.7) is written in the rotating-
wave approximation, and does not explicitly depend on the bare resonator frequency. The
control parameters are the pump amplitude v and the detuning § between the probe and

the resonator frequency. The pump frequency is twice the drive tone.
H = da’a + Zg (a?® — a®) — xaP®a® +iB (o' — a) . (5.13)

Here y is the self-Kerr nonlinearity and g is the probe strength. Since x is typically small
compared to the three-wave-mixing term, we set y = 0 for simulation simplicity. The
simulation is initialized in the ground state [¢)(0)) = |0). At ¢ = 0 the input drive and pump

are turned on. As time evolves, we compute [1(t)) and evaluate

I(t) = @)1 [®), QM) =@wMIQE),  nt)=I*t) +Q¢).

An example input and the corresponding evolution of I(¢) is shown in Fig. 5.2 for zero
pump and several detunings . We observe oscillations in the trajectories when the detuning
is non-zero. These oscillations appear as the signal and pump tone are turned on, and

the system eventually reaches a steady state, as shown in Fig. 5.2. In contrast, when the
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Fig. 5.2: Simulated time evolution of quadratures. (a) Pulse scheme: pump and
probe are turned on simultaneously and held for 10 ps. (b) Simulated evolution
of I and @ for several § with zero pump amplitude v/27 = 0.0 MHz.

detuning is set to zero, the quadrature amplitudes reach their steady-state values without
any oscillations. This behavior indicates that the PT-dimer physics manifests primarily in
the transient response of the signal [156].

With introduction of a pump (v/2rm = 0.095 MHz), the quadrature response changes
markedly: the amplitudes grow at zero detuning and for some nonzero detunings, indicat-
ing imaginary parts of the eigenvalues and amplification—i.e., PT-symmetry breaking. To

visualize this, Fig. 5.3 shows colormaps of I(t) vs. detuning and representative I—@Q) trajecto-
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ries. At zero detuning, trajectories are straight lines because the coupling between I and Q
vanishes, keeping the I quadrature phase-aligned. For nonzero detuning, I and Q exchange
population at a rate set by the eigenvalues, producing spiral trajectories that later saturate.
Such “curly” patterns correspond to real eigenvalues, while straight, exponentially growing

traces indicate imaginary eigenvalues.
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Fig. 5.3: Color map and /-(Q trajectories. (a) Top: I(t) over a sweep of 6 with v/2pi =
0. Bottom: I(t) vs. Q(t) at representative detunings. (b) Same for v/2r =
0.095 MHz.

To quantify this behavior, we fit I(t) to

A(t) = Age “ sin(wt + ¢) + Ay, (5.14)

extracting the oscillation frequency versus detuning. Nonzero fitted w indicates a nonzero
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real part of the eigenvalue; w = 0 with nonzero growth/decay indicates a purely imaginary
eigenvalue. Figure 5.4 shows the extracted frequencies for pump-on and pump-off conditions.
In the pump-on case, a frequency gap appears around zero detuning that widens with pump
strength, indicating an expanding PT-broken region. The same behavior is visible in the
I-Q trajectories: oscillatory (curly) traces for pump-off straighten and grow exponentially

with pump-on.
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o
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—e— v/2m= 0.000 MHz
v/i2m= 0.048 MHz
—e— v/2m= 0.095 MHz

o
o

-0.4 -0.2 0.0
5/2m (MHz)

Fig. 5.4: Extracted eigenvalues from simulation. Frequency extracted from the time
evolution of I(t) for three pump amplitudes.

This comparison highlights the behavior expected experimentally. The model provides
a quantitative framework for extracting eigenvalues and interpreting the JPA response as a
PT-dimer realized via three-wave mixing. Beyond this device, the analysis illustrates how
non-Hermitian systems can be used as sensors near exceptional points [158]. In the pump-on
case, the oscillation frequency versus detuning departs from the linear pump-off response and

follows a quadratic dependence near the exceptional point, characteristic of the EP order.
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5.3.3 Device Design and Characterization

The Hamiltonian above ideally describes an amplifier operating via three-wave mixing. To
probe the associated physics, an experimental device requires input and output ports to inject

probe signals and monitor quadrature dynamics via a weakly coupled output. Formally,

Qout = v/ Rout @,

where Koy is the coupling rate to the output port. Hence, the output quadratures (Zou, Qout)
are proportional to the intracavity quadratures (I, Q) [159]. Because the output port intro-
duces dissipation, the dynamics manifest strongly in the transient response; thus a high-Q)
amplifier is advantageous.

A narrow-bandwidth three-wave-mixing amplifier was designed. It is similar to the flux-
driven JPA in previous chapters, but with a significantly smaller coupling capacitance to
enhance the transient response. Figure 5.5a shows an EM layout of the device (inset: reduced
coupling capacitor). The equivalent circuit schematic (Fig. 5.5b) comprises C, = 1.085 pF,
L, = 0.92 nH, and Ly = 0.516 nH. Coupling to a 50 € port through C. = 84 fF yields a
resonance of 4.028 GHz (zero flux) with quality factor 2.0 x 10%. Lj is realized as an array of
four SQUIDs, each with loop area 5.5 x 5 um? and critical current 3.2 uA. A high-bandwidth
input line is coupled to the SQUID array with mutual inductance 80 pH to modulate Lj at

twice the amplifier frequency; residual capacitive coupling allows weak probe injection [160].
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input O—[>—O output Reduced Capacitance

Fig. 5.5: Degenerate parametric amplifier. (a) EM layout of the device (inset: reduced
coupling capacitor). (b) Circuit schematic; the input port provides pump/probe
coupling and the output port monitors dynamics.

The device is wire-bonded to a microwave circuit board, cooled to 20 mK, and shielded
from stray magnetic flux and radiation. The pump port is filtered and attenuated (total
~50 dB). The cryogenic setup (Fig. 5.6) is similar to that in the previous chapter; both
the weak probe and pump tones are applied to the flux-pump line, while the output is
measured at the weakly coupled port. Transmission measurements ensure detected photons
have interacted with the JPA; the weak input coupling complicates reflection measurements.
The output passes through two cryogenic circulators and a 4 K HEMT amplifier. A DC
flux bias of ®(/6 is applied via an external superconducting coil, establishing linear coupling

between pump and amplifier and enabling pump-driven modulation of Lj.
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Schematic of the cryogenic wiring used in the PT-dimer experi-

Fig. 5.6: Fridge setup.
ment
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We first characterize the frequency response. Figure 5.7 shows (a) frequency modulation
of the JPA due to flux coupling and (b) transmission with pump off (baseline) and pump
on (gain ~ 4.2 dB). The resonance peak is clearly visible, and the gain appears as enhanced

transmission above the baseline [161].

a) b)
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Fig. 5.7: Frequency response. (a) Frequency modulation of the JPA under flux drive.
(b) Transmission with pump off/on; gain ~ 4.2 dB.

5.4 Time-Domain Measurements

The experiment should reproduce the simulated behavior. Because the input probe is ex-
tremely weak, we average over long acquisition times with repeated measurements. Each
run requires the probe and pump to start with the same relative phase; otherwise, operating
in degenerate mode, phase averaging would wash out the distinction between I and ). The
phase-locking scheme is shown in Fig. 5.8. Two independent generators provide pump and
probe. The probe frequency is detuned by A =5 MHz from w, /2. Both sources are split to
create a common trigger. The post-split probe is frequency-doubled and bandpass filtered to
isolate the second harmonic, then mixed with the post-split pump (mixer “A”), generating
a 10 MHz tone used as the external trigger. The remaining probe is upconverted by single-

sideband modulation back to exactly w,/2 (mixer “B”), which also sets the pump-probe
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phase. The pump is gated by a DC square pulse (mixer “C”). The upconverted probe and
pump are combined with a directional coupler and sent to the flux-pump port. Signals

transmitted through the amplifier are demodulated at ws — A (mixer “D”) for heterodyne

detection.

Arbitrary
Wave
generator

Extetnal
Trig'ger

generator

“1 cos(At+)

Fig. 5.8: Microwave setup. The probe is phase-locked to the pump (dashed box). Single-
sideband modulation sets ws = w,/2. The output is demodulated.
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Fig. 5.9: Time-domain measurements. (a) Phase-sensitive response: sweeping probe
phase shows amplification of one quadrature and squeezing of the orthogonal one.
(b) Time-domain response of In and Qa when probe and pump are turned on
simultaneously; further demodulation yields / and @. (c¢) Time evolution of I
(solid) and () (dashed) for three detunings.

120



Chapter 5. Non-Hermitian Systems and Parity—Time Symmetry

Operating in degenerate mode (2ws = w;,) yields inherently phase-sensitive amplification:
in-phase signals are amplified, while quadrature signals are deamplified [162]. Figure 5.9(a)
demonstrates phase-sensitive gain and validates the phase lock. In our experiments we fix
the phase offset at ¢y = 45° to amplify the input and achieve the required SNR.

Figure 5.9(b) shows a representative time trace. At ¢ = 0, probe and pump are enabled,
and the demodulated quadratures exhibit an exponentially varying envelope modulated at
A/2m = 5 MHz. Further demodulation yields I and @, smoothed with a Savitzky—Golay
filter (500 ns window, polynomial order 5). Figure 5.9(c) displays I and @ versus time for
different detunings, showing a crossover from oscillatory to exponentially saturating behav-

ior—marking the onset of PT-symmetry breaking.

5.5 Observation of PT-Symmetry-Breaking Transition

Figure 5.10 shows I versus detuning for three pump strengths. At low pump [Fig. 5.10(a)],
we observe oscillations with frequency set by detuning, as expected when eigenvalues track
detuning (cf. Eq. 5.5). Increasing the pump [Fig. 5.10(b,c)] produces a clear transition from
oscillatory to non-oscillatory behavior as |§| decreases. The I-Q plots (bottom panels) show
alternating regions of oscillatory and non-oscillatory dynamics depending on detuning.

The data agree with a model that includes self-Kerr nonlinearity and a probe drive:
H = éata + Zg (a? — a?) — xa®a® +iB (a' —a). (5.15)

Dissipation through the output port is modeled via a Lindblad term y/ka with /27 =

0.19 MHz, determined from the device quality factor.
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Fig. 5.10: PT-symmetry breaking in a parametric amplifier. Top row: I(t¢) ver-
sus detuning for three pump strengths v/27 = 0.013 (a), 0.046 (b), and 0.072
(¢c) MHz. Middle row: extracted frequencies from measured I(t) (dots), model
(dashed), and ideal PT-dimer eigenvalues (solid red). Bottom row: representa-
tive I(t)-Q(t) trajectories (“curly” plots).
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We use QuTiP [163, 164] to compute the time evolution of I and @ for different detunings.
The input drive and three-wave mixing are turned on at ¢t = 0. From I(¢) we fit Eq. (5.14)
to obtain w, displayed in the middle panels; the same analysis is applied to data with initial
guesses from the model. Fits with o and w of similar magnitude can be weakly constrained
(large fit errors), so the analysis demonstrates consistency with the model rather than precise
parameter extraction. We tune y to best match experiment, yielding x /27 ~ 0.095 MHz
and pump strengths v/2r = 0.013, 0.046, and 0.072 MHz. For comparison, we plot the ideal
PT-dimer eigenvalues using the model-extracted v.

An asymmetry about zero detuning arises from the self-Kerr term, which always lowers
the resonance, dominating at negative detuning. In the ideal PT-dimer, a second-order
transition is expected at the EP; with self-Kerr included, a sharper transition is observed,
suggesting richer dynamics and possibly higher-order effects. Future work can improve SNR
by adding a wider-band JPA as a preamplifier for the PT-dimer JPA. Because most physics
occurs in the transient state, increasing the () further will extend the transient; however,
higher ) reduces saturation power, so maintaining a sufficiently weak probe may require
a quantum-limited post-amplifier. With these improvements, we aim to probe quantum
correlations and entanglement in the output modes [138], while adopting strategies to reduce

self-Kerr [165].

Conclusion This experiment establishes a connection between the transient dynamics of
Josephson parametric amplifiers and the PT-symmetry-breaking transition. In optics, PT
symmetry and exceptional points have motivated a broad range of devices and functionalities.
Extending EP physics to Josephson circuits invites studies of quantum correlations and noise

near EPs, with potential applications in sensing and quantum information processing.
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